122 research outputs found

    PEN: a low energy test of lepton universality

    Full text link
    Allowed charged π\pi meson decays are characterized by simple dynamics, few available decay channels, mainly into leptons, and extremely well controlled radiative and loop corrections. In that sense, pion decays represent a veritable triumph of the standard model (SM) of elementary particles and interactions. This relative theoretical simplicity makes charged pion decays a sensitive means for testing the underlying symmetries and the universality of weak fermion couplings, as well as for studying pion structure and chiral dynamics. Even after considerable recent improvements, experimental precision is lagging far behind that of the theoretical description for pion decays. We review the current state of experimental study of the pion electronic decay π+e+νe(γ)\pi^+ \to e^+\nu_e(\gamma), or πe2(γ)\pi_{e2(\gamma)}, where the (γ)(\gamma) indicates inclusion and explicit treatment of radiative decay events. We briefly review the limits on non-SM processes arising from the present level of experimental precision in πe2(γ)\pi_{e2(\gamma)} decays. Focusing on the PEN experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the prospects for further improvement in the near term.Comment: 11 pages, 5 figures; paper presented at the XIII International Conference on Heavy Quarks and Leptons, 22-27 May 2016, Blacksburg, Virginia, US

    PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction

    Full text link
    A new measurement of Bπe2B_{\pi e2}, the π+e+ν(γ)\pi^+ \to e^+\nu(\gamma) decay branching ratio, is currently under way at the Paul Scherrer Institute. The present experimental result on Bπe2B_{\pi e2} constitutes the most accurate test of lepton universality available. The accuracy, however, still lags behind the theoretical precision by over an order of magnitude. Because of the large helicity suppression of the πe2\pi_{e2} decay, its branching ratio is susceptible to significant contributions from new physics, making this decay a particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the American Institute of Physic

    Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant

    Get PDF
    Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys. J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA

    Get PDF
    Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.

    Jets and energy flow in photon-proton collisions at HERA

    Get PDF
    Properties of the hadronic final state in photoproduction events with large transverse energy are studied at the electron-proton collider HERA. Distributions of the transverse energy, jets and underlying event energy are compared to \overline{p}p data and QCD calculations. The comparisons show that the \gamma p events can be consistently described by QCD models including -- in addition to the primary hard scattering process -- interactions between the two beam remnants. The differential jet cross sections d\sigma/dE_T^{jet} and d\sigma/d\eta^{jet} are measured

    Разработка интерактивной моделирующей системы технологии низкотемпературной сепарации газа

    Get PDF
    We present a study of J ψ meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The J ψ mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → J ψ X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ W γp ≤ 180 GeV and Q 2 ≲ 4 GeV 2 . Using the flux of quasi-real photons with Q 2 ≲ 4 GeV 2 , a total production cross section of σ ( γp → J / ψX ) = (56±13±14) nb is derived at an average W γp =90 GeV. The distribution of the squared momentum transfer t from the proton to the J ψ can be fitted using an exponential exp(− b ∥ t ∥) below a ∥ t ∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV −2
    corecore