5,225 research outputs found

    The Radial Distribution of the Kuiper Belt

    Get PDF
    We examine the radial distribution of the Kuiper Belt objects (KBOs) using a method that is insensitive to observational bias effects. This technique allows the use of the discovery distances of all KBOs, independent of orbital classification or discovery circumstance. We verify the presence of an outer edge to the Kuiper Belt, as reported in other works, and we measure this edge to be at R = 47 ± 1 AU given any physically plausible model of the size distribution. We confirm that this outer edge is due to the classical KBOs, the most numerically dominant observationally. In addition, we find that current surveys do not preclude the presence of a second, unobserved Kuiper Belt beyond R = 76 AU

    Discovery of a Candidate Inner Oort Cloud Planetoid

    Get PDF
    We report the discovery of the minor planet (90377) Sedna, the most distant object ever seen in the solar system. Prediscovery images from 2001, 2002, and 2003 have allowed us to refine the orbit sufficiently to conclude that Sedna is on a highly eccentric orbit that permanently resides well beyond the Kuiper Belt with a semimajor axis of 480 ± 40 AU and a perihelion of 76 ± 4 AU. Such an orbit is unexpected in our current understanding of the solar system but could be the result of scattering by a yet-to-be-discovered planet, perturbation by an anomalously close stellar encounter, or formation of the solar system within a cluster of stars. In all of these cases a significant additional population is likely present, and in the two most likely cases Sedna is best considered a member of the inner Oort Cloud, which then extends to much smaller semimajor axes than previously expected. Continued discovery and orbital characterization of objects in this inner Oort Cloud will verify the genesis of this unexpected population

    Isotropic inelastic and superelastic collisional rates in a multiterm atom

    Full text link
    The spectral line polarization of the radiation emerging from a magnetized astrophysical plasma depends on the state of the atoms within the medium, whose determination requires considering the interactions between the atoms and the magnetic field, between the atoms and photons (radiative transitions), and between the atoms and other material particles (collisional transitions). In applications within the framework of the multiterm model atom (which accounts for quantum interference between magnetic sublevels pertaining either to the same J-level or to different J-levels within the same term) collisional processes are generally neglected when solving the master equation for the atomic density matrix. This is partly due to the lack of experimental data and/or of approximate theoretical expressions for calculating the collisional transfer and relaxation rates (in particular the rates for interference between sublevels pertaining to different J-levels, and the depolarizing rates due to elastic collisions). In this paper we formally define and investigate the transfer and relaxation rates due to isotropic inelastic and superelastic collisions that enter the statistical equilibrium equations of a multiterm atom. Under the hypothesis that the atom-collider interaction can be described by a dipolar operator, we provide expressions that relate the collisional rates for interference between different J-levels to the usual collisional rates for J-level populations. Finally, we apply the general equations to the case of a two-term atom with unpolarized lower term, illustrating the impact of inelastic and superelastic collisions on scattering polarization through radiative transfer calculations in a slab of stellar atmospheric plasma anisotropically illuminated by the photospheric radiation field.Comment: Accepted for publication in Astronomy & Astrophysic

    Theoretical formulation of Doppler redistribution in scattering polarization within the framework of the velocity-space density matrix formalism

    Full text link
    Within the framework of the density matrix theory for the generation and transfer of polarized radiation, velocity density matrix correlations represent an important physical aspect that, however, is often neglected in practical applications by adopting the simplifying approximation of complete redistribution on velocity. In this paper, we present an application of the Non-LTE problem for polarized radiation taking such correlations into account through the velocity-space density matrix formalism. We consider a two-level atom with infinitely sharp upper and lower levels, and we derive the corresponding statistical equilibrium equations neglecting the contribution of velocity-changing collisions. Coupling such equations with the radiative transfer equations for polarized radiation, we derive a set of coupled equations for the velocity-dependent source function. This set of equations is then particularized to the case of a plane-parallel atmosphere. The equations presented in this paper provide a complete and solid description of the physics of pure Doppler redistribution, a phenomenon generally described within the framework of the redistribution matrix formalism. The redistribution matrix corresponding to this problem (generally referred to as R_I) is derived starting from the statistical equilibrium equations for the velocity-space density matrix and from the radiative transfer equations for polarized radiation, thus showing the equivalence of the two approaches.Comment: Accepted for publication in Astronomy & Astrophysic

    A Correlation Between Inclination and Color in the Classical Kuiper Belt

    Get PDF
    We have measured broadband optical BVR photometry of 24 Classical and Scattered Kuiper belt objects (KBOs), approximately doubling the published sample of colors for these classes of objects. We find a statistically significant correlation between object color and inclination in the Classical Kuiper belt using our data. The color and inclination correlation increases in significance after the inclusion of additional data points culled from all published works. Apparently, this color and inclination correlation has not been more widely reported because the Plutinos show no such correlation, and thus have been a major contaminant in previous samples. The color and inclination correlation excludes simple origins of color diversity, such as the presence of a coloring agent without regard to dynamical effects. Unfortunately, our current knowledge of the Kuiper belt precludes us from understanding whether the color and inclination trend is due to environmental factors, such as collisional resurfacing, or primordial population effects. A perihelion and color correlation is also evident, although this appears to be a spurious correlation induced by sampling bias, as perihelion and inclination are correlated in the observed sample of KBOs.Comment: Accepted to Astrophysical Journal Letter

    Polynomial Approximants for the Calculation of Polarization Profiles in the \ion{He}{1} 10830 \AA Multiplet

    Full text link
    The \ion{He}{1} multiplet at 10830 \AA is formed in the incomplete Paschen-Back regime for typical conditions found in solar and stellar atmospheres. The positions and strengths of the various components that form the Zeeman structure of this multiplet in the Paschen-Back regime are approximated here by polynomials. The fitting errors are smaller than ∌10−2\sim10^{-2} m\AA in the component positions and ∌10−3\sim10^{-3} in the relative strengths. The approximant polynomials allow for a very fast implementation of the incomplete Paschen-Back regime in numerical codes for the synthesis and inversion of polarization profiles in this important multiplet.Comment: ApJ Supplements (in press
    • 

    corecore