5,897 research outputs found
Scattering Polarization of the Ca II IR Triplet for Probing the Quiet Solar Chromosphere
The chromosphere of the quiet Sun is an important stellar atmospheric region
whose thermal and magnetic structure we need to decipher for unlocking new
discoveries in solar and stellar physics. To this end, we must identify and
exploit observables sensitive to weak magnetic fields (B<100 G) and to the
presence of cool and hot gas in the bulk of the solar chromosphere. Here we
report on an investigation of the Hanle effect in two semi-empirical models of
the quiet solar atmosphere with different chromospheric thermal structures. Our
study reveals that scattering polarization in the Ca II IR triplet has thermal
and magnetic sensitivities potentially of great diagnostic value. The linear
polarization in the 8498 A line shows a strong sensitivity to inclined magnetic
fields with strengths between 0.001 and 10 G, while the emergent linear
polarization in the 8542 A and 8662 A lines is mainly sensitive to magnetic
fields with strengths between 0.001 and 0.1 G. The reason for this is that the
scattering polarization of the 8542 A and 8662 A lines, unlike the 8498 A line,
is controlled mainly by the Hanle effect in their (metastable) lower levels.
Therefore, in regions with magnetic strengths sensibly larger than 1 G, their
Stokes Q and U profiles are sensitive only to the orientation of the magnetic
field vector. We also find that for given magnetic field configurations the
sign of the Q/I and U/I profiles of the 8542 A and 8662 A lines is the same in
both atmospheric models, while the sign of the linear polarization profile of
the 8498 A line turns out to be very sensitive to the thermal structure of the
lower chromosphere. We suggest that spectropolarimetric observations providing
information on the relative scattering polarization amplitudes of the Ca II IR
triplet will be very useful to improve our empirical understanding of the
thermal and magnetic structure of the quiet chromosphere.Comment: 27 pages, 16 figures, to appear in Ap
Are collisions with neutral hydrogen important for modelling the Second Solar Spectrum of Ti I and Ca II ?
The physical interpretation of scattering line polarization offers a novel
diagnostic window for exploring the thermal and magnetic structure of the quiet
regions of the solar atmosphere. Here we evaluate the impact of isotropic
collisions with neutral hydrogen atoms on the scattering polarization signals
of the 13 lines of multiplet 42 of Ti I and on those of the K line and of the
IR triplet of Ca II, with emphasis on the collisional transfer rates between
nearby J-levels. To this end, we calculate the linear polarization produced by
scattering processes considering realistic multilevel models and solving the
statistical equilibrium equations for the multipolar components of the atomic
density matrix. We confirm that the lower levels of the 13 lines of multiplet
42 of Ti I are completely depolarized by elastic collisions. We find that
upper-level collisional depolarization turns out to have an unnoticeable impact
on the emergent linear polarization amplitudes, except for the {\lambda 4536
line for which it is possible to notice a rather small depolarization caused by
the collisional transfer rates. Concerning the Ca II lines, we show that the
collisional rates play no role on the polarization of the upper level of the K
line, while they have a rather small depolarizing effect on the atomic
polarization of the metastable lower levels of the Ca II IR triplet.Comment: Accepted for publication in Astronomy and Astrophysic
Recent Advances in Chromospheric and Coronal Polarization Diagnostics
I review some recent advances in methods to diagnose polarized radiation with
which we may hope to explore the magnetism of the solar chromosphere and
corona. These methods are based on the remarkable signatures that the
radiatively induced quantum coherences produce in the emergent spectral line
polarization and on the joint action of the Hanle and Zeeman effects. Some
applications to spicules, prominences, active region filaments, emerging flux
regions and the quiet chromosphere are discussed.Comment: Review paper to appear in "Magnetic Coupling between the Interior and
the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics
and Space Science Proceedings, Springer-Verlag, 200
The orientation of galaxy dark matter haloes around cosmic voids
Using the Millennium N-body Simulation we explore how the shape and angular momentum of galaxy dark matter haloes surrounding the largest cosmological voids are oriented. We find that the major and intermediate axes of the haloes tend to lie parallel to the surface of the voids, whereas the minor axis points preferentially in the radial direction. We have quantified the strength of these alignments at different radial distances from the void centres. The effect of these orientations is still detected at distances as large as 2.2 Rvoid from the void centre. Taking a subsample of haloes expected to contain disc-dominated galaxies at their centres we detect, at the 99.9 per cent confidence level, a signal that the angular momentum of those haloes tends to lie parallel to the surface of the voids. Contrary to the alignments of the inertia axes, this signal is only detected in shells at the void surface (1 < R < 1.07 Rvoid) and disappears at larger distances. This signal, together with the similar alignment observed using real spiral galaxies, strongly supports the prediction of the Tidal Torque theory that both dark matter haloes and baryonic matter have acquired, conjointly, their angular momentum before the moment of turnaround
- …