280 research outputs found

    The Monge problem in Wiener Space

    Full text link
    We address the Monge problem in the abstract Wiener space and we give an existence result provided both marginal measures are absolutely continuous with respect to the infinite dimensional Gaussian measure {\gamma}

    Monge's transport problem in the Heisenberg group

    Get PDF
    We prove the existence of solutions to Monge transport problem between two compactly supported Borel probability measures in the Heisenberg group equipped with its Carnot-Caratheodory distance assuming that the initial measure is absolutely continuous with respect to the Haar measure of the group

    Two problems related to prescribed curvature measures

    Full text link
    Existence of convex body with prescribed generalized curvature measures is discussed, this result is obtained by making use of Guan-Li-Li's innovative techniques. In surprise, that methods has also brought us to promote Ivochkina's C2C^2 estimates for prescribed curvature equation in \cite{I1, I}.Comment: 12 pages, Corrected typo

    Collapsing Shells and the Isoperimetric Inequality for Black Holes

    Get PDF
    Recent results of Trudinger on Isoperimetric Inequalities for non-convex bodies are applied to the gravitational collapse of a lightlike shell of matter to form a black hole. Using some integral identities for co-dimension two surfaces in Minkowski spacetime, the area AA of the apparent horizon is shown to be bounded above in terms of the mass MM by the 16Ï€G2M216 \pi G^2 M^2, which is consistent with the Cosmic Censorship Hypothesis. The results hold in four spacetime dimensions and above.Comment: 16 pages plain TE

    Quantum Correction to the Entropy of the (2+1)-Dimensional Black Hole

    Get PDF
    The thermodynamic properties of the (2+1)-dimensional non-rotating black hole of Ba\~nados, Teitelboim and Zanelli are discussed. The first quantum correction to the Bekenstein-Hawking entropy is evaluated within the on-shell Euclidean formalism, making use of the related Chern-Simons representation of the 3-dimensional gravity. Horizon and ultraviolet divergences in the quantum correction are dealt with a renormalization of the Newton constant. It is argued that the quantum correction due to the gravitational field shrinks the effective radius of a hole and becomes more and more important as soon as the evaporation process goes on, while the area law is not violated.Comment: 14 pages, Latex, one new reference adde

    A compactness theorem for scalar-flat metrics on manifolds with boundary

    Full text link
    Let (M,g) be a compact Riemannian manifold with boundary. This paper is concerned with the set of scalar-flat metrics which are in the conformal class of g and have the boundary as a constant mean curvature hypersurface. We prove that this set is compact for dimensions greater than or equal to 7 under the generic condition that the trace-free 2nd fundamental form of the boundary is nonzero everywhere.Comment: 49 pages. Final version, to appear in Calc. Var. Partial Differential Equation

    Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents

    Full text link
    Motivated by the statistical mechanics description of stationary 2D-turbulence, for a sinh-Poisson type equation with asymmetric nonlinearity, we construct a concentrating solution sequence in the form of a tower of singular Liouville bubbles, each of which has a different degeneracy exponent. The asymmetry parameter γ∈(0,1]\gamma\in(0,1] corresponds to the ratio between the intensity of the negatively rotating vortices and the intensity of the positively rotating vortices. Our solutions correspond to a superposition of highly concentrated vortex configurations of alternating orientation; they extend in a nontrivial way some known results for γ=1\gamma=1. Thus, by analyzing the case γ≠1\gamma\neq1 we emphasize specific properties of the physically relevant parameter γ\gamma in the vortex concentration phenomena
    • …
    corecore