386 research outputs found
Design, production and characterization of mirrors for ultra-broadband, high-finesse enhancement cavities
To enable the enhancement of few-cycle pulses in high-finesse passive optical
resonators, a novel complementary-phase approach is considered for the
resonator mirrors. The design challenges and first experimental results are
presented.Comment: 3 page
Cavity-enhanced noncollinear high-harmonic generation
Femtosecond enhancement cavities have enabled multi-10-MHz-repetition-rate coherent extreme ultraviolet (XUV) sources with photon energies exceeding 100 eV – albeit with rather severe limitations of the net conversion efficiency and of the duration of the XUV emission. Here, we explore the possibility of circumventing both these limitations by harnessing spatiotemporal couplings in the driving field, similar to the "attosecond lighthouse," in theory and experiment. Our results predict dramatically improved output coupling efficiencies and efficient generation of isolated XUV attosecond pulses
Investigation of the complex dynamics and regime control in Pierce diode with the delay feedback
In this paper the dynamics of Pierce diode with overcritical current under
the influence of delay feedback is investigated. The system without feedback
demonstrates complex behaviour including chaotic regimes. The possibility of
oscillation regime control depending on the delay feedback parameter values is
shown. Also the paper describes construction of a finite-dimensional model of
electron beam behaviour, which is based on the Galerkin approximation by linear
modes expansion. The dynamics of the model is close to the one given by the
distributed model.Comment: 18 pages, 6 figures, published in Int. J. Electronics. 91, 1 (2004)
1-1
Analysis and optimization of a free-electron laser with an irregular waveguide
Using a time-dependent approach the analysis and optimization of a planar
FEL-amplifier with an axial magnetic field and an irregular waveguide is
performed. By applying methods of nonlinear dynamics three-dimensional
equations of motion and the excitation equation are partly integrated in an
analytical way. As a result, a self-consistent reduced model of the FEL is
built in special phase space. The reduced model is the generalization of the
Colson-Bonifacio model and takes into account the intricate dynamics of
electrons in the pump magnetic field and the intramode scattering in the
irregular waveguide. The reduced model and concepts of evolutionary computation
are used to find optimal waveguide profiles. The numerical simulation of the
original non-simplified model is performed to check the effectiveness of found
optimal profiles. The FEL parameters are chosen to be close to the parameters
of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p.
750), in which a sheet electron beam with the moderate thickness interacts with
the TE01 mode of a rectangular waveguide. The results strongly indicate that
one can improve the efficiency by a factor of five or six if the FEL operates
in the magnetoresonance regime and if the irregular waveguide with the
optimized profile is used
Comparison of two techniques for reliable characterization of thin metal-dielectric films
In the present study we determine the optical parameters of thin metal–dielectric films using two different characterization techniques based on nonparametric and multiple oscillator models. We consider four series of thin metal–dielectric films produced under various deposition conditions with different optical properties. We compare characterization results obtained by nonparametric and multiple oscillator techniques and demonstrate that the results are consistent. The consistency of the results proves their reliability
Design and production of bicolour reflecting coatings with Au metal island films
Optical properties of metal island films (MIFs) can be combined with interference of dielectric coatings. A set of multilayer designs containing metal clusters reflecting different colours from front and back side of the coating was obtained by numerical optimization. The chosen designs presenting the range of feasible colours were deposited by electron beam evaporation. Spectrophotometric and ellipsometric measurements verified that the produced coatings present an excellent agreement with the optical performance calculated from the designs. Numerical optimization was verified as a useful method in designing of coatings containing MIFs. This approach can ease the implementation of metal clusters into multilayer designs and broaden the applications of MIFs
Chaotic synchronization of coupled electron-wave systems with backward waves
The chaotic synchronization of two electron-wave media with interacting
backward waves and cubic phase nonlinearity is investigated in the paper. To
detect the chaotic synchronization regime we use a new approach, the so-called
time scale synchronization [Chaos, 14 (3) 603-610 (2004)]. This approach is
based on the consideration of the infinite set of chaotic signals' phases
introduced by means of continuous wavelet transform. The complex space-time
dynamics of the active media and mechanisms of the time scale synchronization
appearance are considered.Comment: 11 pages, 7 figures, published in CHAOS, 15 (2005) 01370
Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field
The effect of the strength of the focusing magnetic field on chaotic dynamic
processes occurring inan electron beam with a virtual cathode, as well as on
the processes whereby the structures form in the beamand interact with each
other, is studied by means of two-dimensional numerical simulations based on
solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as
the focusing magnetic field is decreased,the dynamics of an electron beam with
a virtual cathode becomes more complicated due to the formation andinteraction
of spatio-temporal longitudinal and transverse structures in the interaction
region of a vircator. The optimum efficiency of the interaction of an electron
beam with the electromagnetic field of the vircator isachieved at a
comparatively weak external magnetic field and is determined by the
fundamentally two-dimensional nature of the motion of the beam electrons near
the virtual cathode.Comment: 12 pages, 8 figure
- …
