386 research outputs found

    Design, production and characterization of mirrors for ultra-broadband, high-finesse enhancement cavities

    Full text link
    To enable the enhancement of few-cycle pulses in high-finesse passive optical resonators, a novel complementary-phase approach is considered for the resonator mirrors. The design challenges and first experimental results are presented.Comment: 3 page

    Cavity-enhanced noncollinear high-harmonic generation

    No full text
    Femtosecond enhancement cavities have enabled multi-10-MHz-repetition-rate coherent extreme ultraviolet (XUV) sources with photon energies exceeding 100 eV – albeit with rather severe limitations of the net conversion efficiency and of the duration of the XUV emission. Here, we explore the possibility of circumventing both these limitations by harnessing spatiotemporal couplings in the driving field, similar to the "attosecond lighthouse," in theory and experiment. Our results predict dramatically improved output coupling efficiencies and efficient generation of isolated XUV attosecond pulses

    Investigation of the complex dynamics and regime control in Pierce diode with the delay feedback

    Full text link
    In this paper the dynamics of Pierce diode with overcritical current under the influence of delay feedback is investigated. The system without feedback demonstrates complex behaviour including chaotic regimes. The possibility of oscillation regime control depending on the delay feedback parameter values is shown. Also the paper describes construction of a finite-dimensional model of electron beam behaviour, which is based on the Galerkin approximation by linear modes expansion. The dynamics of the model is close to the one given by the distributed model.Comment: 18 pages, 6 figures, published in Int. J. Electronics. 91, 1 (2004) 1-1

    Analysis and optimization of a free-electron laser with an irregular waveguide

    Full text link
    Using a time-dependent approach the analysis and optimization of a planar FEL-amplifier with an axial magnetic field and an irregular waveguide is performed. By applying methods of nonlinear dynamics three-dimensional equations of motion and the excitation equation are partly integrated in an analytical way. As a result, a self-consistent reduced model of the FEL is built in special phase space. The reduced model is the generalization of the Colson-Bonifacio model and takes into account the intricate dynamics of electrons in the pump magnetic field and the intramode scattering in the irregular waveguide. The reduced model and concepts of evolutionary computation are used to find optimal waveguide profiles. The numerical simulation of the original non-simplified model is performed to check the effectiveness of found optimal profiles. The FEL parameters are chosen to be close to the parameters of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p. 750), in which a sheet electron beam with the moderate thickness interacts with the TE01 mode of a rectangular waveguide. The results strongly indicate that one can improve the efficiency by a factor of five or six if the FEL operates in the magnetoresonance regime and if the irregular waveguide with the optimized profile is used

    Comparison of two techniques for reliable characterization of thin metal-dielectric films

    Get PDF
    In the present study we determine the optical parameters of thin metal–dielectric films using two different characterization techniques based on nonparametric and multiple oscillator models. We consider four series of thin metal–dielectric films produced under various deposition conditions with different optical properties. We compare characterization results obtained by nonparametric and multiple oscillator techniques and demonstrate that the results are consistent. The consistency of the results proves their reliability

    Design and production of bicolour reflecting coatings with Au metal island films

    Get PDF
    Optical properties of metal island films (MIFs) can be combined with interference of dielectric coatings. A set of multilayer designs containing metal clusters reflecting different colours from front and back side of the coating was obtained by numerical optimization. The chosen designs presenting the range of feasible colours were deposited by electron beam evaporation. Spectrophotometric and ellipsometric measurements verified that the produced coatings present an excellent agreement with the optical performance calculated from the designs. Numerical optimization was verified as a useful method in designing of coatings containing MIFs. This approach can ease the implementation of metal clusters into multilayer designs and broaden the applications of MIFs

    Chaotic synchronization of coupled electron-wave systems with backward waves

    Full text link
    The chaotic synchronization of two electron-wave media with interacting backward waves and cubic phase nonlinearity is investigated in the paper. To detect the chaotic synchronization regime we use a new approach, the so-called time scale synchronization [Chaos, 14 (3) 603-610 (2004)]. This approach is based on the consideration of the infinite set of chaotic signals' phases introduced by means of continuous wavelet transform. The complex space-time dynamics of the active media and mechanisms of the time scale synchronization appearance are considered.Comment: 11 pages, 7 figures, published in CHAOS, 15 (2005) 01370

    Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    Get PDF
    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.Comment: 12 pages, 8 figure
    corecore