8 research outputs found

    α,β-Methylene-2′-deoxynucleoside 5′-triphosphates as noncleavable substrates for DNA polymerases: Isolation, characterization, and stability studies of novel 2′-deoxycyclonucleosides, 3,5′-cyclo-dG, and 2,5′-cyclo-dT

    No full text
    We report synthesis and characterization of a complete set of α,β-methylene-2′-dNTPs (α,β-m-dNTP; N = A, C, T, G, 12-15) in which the α,β-oxygen linkage of natural dNTP was replaced by a methylene group. These nucleotides were designed to be noncleavable substrates for DNA polymerases. Synthesis entails preparation of 2′-deoxynucleoside 5′-diphosphate precursors, followed by an enzymatic γ-phosphorylation. All four synthesized α,β-m-dNTPs were found to be potent inhibitors of polymerase β, with Ki values ranging 1-5 μM. During preparation of the dG and dT derivatives of α,β-methylene diphosphate, we also isolated significant amounts of 3,5′-cyclo-dG (16) and 2,5′-cyclo-dT (17), respectively. These novel 2′-deoxycyclonucleosides were formed via a base-catalyzed intramolecular cyclization (N3 → C5′ and O2 → C5′, respectively). In acidic solution, both 16 and 17 underwent glycolysis, followed by complete depurination. When exposed to alkaline conditions, 16 underwent an oxidative deamination to produce 3,5′-cyclo-2′-deoxyxanthosine (19), whereas 17 was hydrolyzed exclusively to dT. © 2008 American Chemical Society

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Molecular Imaging of Inflammation/Infection: Nuclear Medicine and Optical Imaging Agents and Methods

    No full text
    corecore