87 research outputs found

    The effectiveness of injury prevention programs to modify risk factors for non-contact anterior cruciate ligament and hamstring injuries in uninjured team sports athletes: A systematic review

    Get PDF
    Background Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. Objective The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. Data Sources PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Main Results Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Conclusions Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors

    Foraging Behavior under Starvation Conditions Is Altered via Photosynthesis by the Marine Gastropod, Elysia clarki

    Get PDF
    It has been well documented that nutritional state can influence the foraging behavior of animals. However, photosynthetic animals, those capable of both heterotrophy and symbiotic photosynthesis, may have a delayed behavioral response due to their ability to photosynthesize. To test this hypothesis we subjected groups of the kleptoplastic sea slug, Elysia clarki, to a gradient of starvation treatments of 4, 8, and 12 weeks plus a satiated control. Compared to the control group, slugs starved 8 and 12 weeks displayed a significant increase in the proportion of slugs feeding and a significant decrease in photosynthetic capability, as measured in maximum quantum yield and [chl a]. The 4 week group, however, showed no significant difference in feeding behavior or in the metrics of photosynthesis compared to the control. This suggests that photosynthesis in E. clarki, thought to be linked to horizontally-transferred algal genes, delays a behavioral response to starvation. This is the first demonstration of a link between photosynthetic capability in an animal and a modification of foraging behavior under conditions of starvation

    Catalytic C(sp3)-H bond activation in tertiary alkylamines.

    Get PDF
    The development of robust catalytic methods to assemble tertiary alkylamines provides a continual challenge to chemical synthesis. In this regard, transformation of a traditionally unreactive C-H bond, proximal to the nitrogen atom, into a versatile chemical entity would be a powerful strategy for introducing functional complexity to tertiary alkylamines. A practical and selective metal-catalysed C(sp3)-H activation facilitated by the tertiary alkylamine functionality, however, remains an unsolved problem. Here, we report a Pd(II)-catalysed protocol that appends arene feedstocks to tertiary alkylamines via C(sp3)-H functionalization. A simple ligand for Pd(II) orchestrates the C-H activation step in favour of deleterious pathways. The reaction can use both simple and complex starting materials to produce a range of multifaceted γ-aryl tertiary alkylamines and can be rendered enantioselective. The enabling features of this transformation should be attractive to practitioners of synthetic and medicinal chemistry as well as in other areas that use biologically active alkylamines

    The Bryopsis hypnoides Plastid Genome: Multimeric Forms and Complete Nucleotide Sequence

    Get PDF
    BACKGROUND: Bryopsis hypnoides Lamouroux is a siphonous green alga, and its extruded protoplasm can aggregate spontaneously in seawater and develop into mature individuals. The chloroplast of B. hypnoides is the biggest organelle in the cell and shows strong autonomy. To better understand this organelle, we sequenced and analyzed the chloroplast genome of this green alga. PRINCIPAL FINDINGS: A total of 111 functional genes, including 69 potential protein-coding genes, 5 ribosomal RNA genes, and 37 tRNA genes were identified. The genome size (153,429 bp), arrangement, and inverted-repeat (IR)-lacking structure of the B. hypnoides chloroplast DNA (cpDNA) closely resembles that of Chlorella vulgaris. Furthermore, our cytogenomic investigations using pulsed-field gel electrophoresis (PFGE) and southern blotting methods showed that the B. hypnoides cpDNA had multimeric forms, including monomer, dimer, trimer, tetramer, and even higher multimers, which is similar to the higher order organization observed previously for higher plant cpDNA. The relative amounts of the four multimeric cpDNA forms were estimated to be about 1, 1/2, 1/4, and 1/8 based on molecular hybridization analysis. Phylogenetic analyses based on a concatenated alignment of chloroplast protein sequences suggested that B. hypnoides is sister to all Chlorophyceae and this placement received moderate support. CONCLUSION: All of the results suggest that the autonomy of the chloroplasts of B. hypnoides has little to do with the size and gene content of the cpDNA, and the IR-lacking structure of the chloroplasts indirectly demonstrated that the multimeric molecules might result from the random cleavage and fusion of replication intermediates instead of recombinational events
    • …
    corecore