440 research outputs found
Magnetic-Field Induced Quantum Critical Point in YbRhSi
We report low-temperature calorimetric, magnetic and resistivity measurements
on the antiferromagnetic (AF) heavy-fermion metal YbRhSi ( 70
mK) as a function of magnetic field . While for fields exceeding the
critical value at which the low temperature resistivity
shows an dependence, a divergence of upon
reducing to suggests singular scattering at the whole Fermi
surface and a divergence of the heavy quasiparticle mass. The observations are
interpreted in terms of a new type of quantum critical point separating a
weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let
Hall-effect evolution across a heavy-fermion quantum critical point
A quantum critical point (QCP) develops in a material at absolute zero when a
new form of order smoothly emerges in its ground state. QCPs are of great
current interest because of their singular ability to influence the finite
temperature properties of materials. Recently, heavy-fermion metals have played
a key role in the study of antiferromagnetic QCPs. To accommodate the heavy
electrons, the Fermi surface of the heavy-fermion paramagnet is larger than
that of an antiferromagnet. An important unsolved question concerns whether the
Fermi surface transformation at the QCP develops gradually, as expected if the
magnetism is of spin density wave (SDW) type, or suddenly as expected if the
heavy electrons are abruptly localized by magnetism. Here we report
measurements of the low-temperature Hall coefficient () - a measure of the
Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it
from an antiferromagnetic to a paramagnetic state. undergoes an
increasingly rapid change near the QCP as the temperature is lowered,
extrapolating to a sudden jump in the zero temperature limit. We interpret
these results in terms of a collapse of the large Fermi surface and of the
heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur
The break up of heavy electrons at a quantum critical point
The point at absolute zero where matter becomes unstable to new forms of
order is called a quantum critical point (QCP). The quantum fluctuations
between order and disorder that develop at this point induce profound
transformations in the finite temperature electronic properties of the
material. Magnetic fields are ideal for tuning a material as close as possible
to a QCP, where the most intense effects of criticality can be studied. A
previous study on theheavy-electron material found that near a
field-induced quantum critical point electrons move ever more slowly and
scatter off one-another with ever increasing probability, as indicated by a
divergence to infinity of the electron effective mass and cross-section. These
studies could not shed light on whether these properties were an artifact of
the applied field, or a more general feature of field-free QCPs. Here we report
that when Germanium-doped is tuned away from a chemically induced
quantum critical point by magnetic fields there is a universal behavior in the
temperature dependence of the specific heat and resistivity: the characteristic
kinetic energy of electrons is directly proportional to the strength of the
applied field. We infer that all ballistic motion of electrons vanishes at a
QCP, forming a new class of conductor in which individual electrons decay into
collective current carrying motions of the electron fluid.Comment: Pdf files of article available at
http://www.physics.rutgers.edu/~coleman/online/breakup.pdf, pdf file of news
and views article available at
http://www.physics.rutgers.edu/~coleman/online/nvbreakup.pd
YbRh2Si2: Quantum tricritical behavior in itinerant electron systems
We propose that proximity of the first-order transition manifested by the
quantum tricritical point (QTCP) explains non-Fermi-liquid properties of
YbRh2Si2. Here, at the QTCP, a continuous phase transition changes into first
order at zero temperature. The non-Fermi-liquid behaviors of YbRh2Si2 are
puzzling in two aspects; diverging ferromagnetic susceptibility at the
antiferromagnetic transition and unconventional power-law dependence in
thermodynamic quantities. These puzzles are solved by an unconventional
criticality derived from our spin fluctuation theory for the QTCP.Comment: 4 pages, 3 figure
Tuning Chemical and Morphological Properties of Ceria Nanopowders by Mechanochemistry
Cerium oxide powders are widely used and are of fundamental importance in catalytic pollution control and energy production due to the unique chemical properties of CeO2. Processing steps involved in catalyst preparation, such as high-temperature calcination or mechanical milling processes, can alter the morphological and chemical properties of ceria, heavily affecting its final properties. Here, we focus on the tuning of CeO2 nanopowder properties by mild- and high-energy milling processes, as the mechanochemical synthesis is gaining increasing attention as a green synthesis method for catalyst production. The textural and redox properties were analyzed by an array of techniques to follow the aggregation and comminution mechanisms induced by mechanical stresses, which are more prominent under high-energy conditions but strongly depend on the starting properties of the ceria powders. Simultaneously, the evolution of surface defects and chemical properties was followed by Raman spectroscopy and H2 reduction tests, ultimately revealing a trade-off effect between structural and redox properties induced by the mechanochemical action. The mild-energy process appears to induce the largest enhancement in surface properties while maintaining bulk properties of the starting materials, hence confirming its effectiveness for its exploitation in catalysis
Enhanced Impurity Scattering due to Quantum Critical Fluctuations
It is shown on the basis of the lowest order perturbation expansion with
respect to critical fluctuations that the critical fluctuations give rise to an
enhancement of the potential scattering of non-magnetic impurities. This
qualitatively accounts for the enhancement of the resistivity due to impurities
which has been observed in variety of systems near the quantum critical point,
while the higher order processes happen to give much larger enhancement as seen
from the Ward identity arguments. The cases with dynamical critical exponent
=2 and =3 are discussed explicitly.Comment: Submitted to J. Phys. Soc. Jpn. on 27 September, 200
Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2
We present high-resolution photoemission spectroscopy studies on the Kondo
resonance of the strongly-correlated Ce system CeCuSi. Exploiting the
thermal broadening of the Fermi edge we analyze position, spectral weight, and
temperature dependence of the low-energy 4f spectral features, whose major
weight lies above the Fermi level . We also present theoretical
predictions based on the single-impurity Anderson model using an extended
non-crossing approximation (NCA), including all spin-orbit and crystal field
splittings of the 4f states. The excellent agreement between theory and
experiment provides strong evidence that the spectral properties of
CeCuSi can be described by single-impurity Kondo physics down to K.Comment: 4 pages, 3 figure
Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis
We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum
critical point, in the marginal case of two dimensions (d=2,z=2). Up to
next-to-leading order in the number of components (N) of the field, we find
that logarithmic corrections do not lead to an enhancement of the Landau
damping. This is in agreement with a renormalization-group analysis, for
arbitrary N. Hence, the logarithmic effects are unable to account for the
behavior reportedly observed in inelastic neutron scattering experiments on
CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment
(local approximation) of this theory, and find that only subdominant
corrections to the Landau damping are obtained within this approximation, in
contrast to recent claims.Comment: 15 pages, 8 figure
Break up of heavy fermions at an antiferromagnetic instability
We present results of high-resolution, low-temperature measurements of the
Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2.
They support earlier conclusions of an electronic (Kondo-breakdown) quantum
critical point concurring with a field induced antiferromagnetic one. We also
discuss the detachment of the two instabilities under chemical pressure. Volume
compression/expansion (via substituting Rh by Co/Ir) results in a
stabilization/weakening of magnetic order. Moderate Ir substitution leads to a
non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor
screened by the Kondo effect. The so-derived zero-temperature global phase
diagram promises future studies to explore the nature of the Kondo breakdown
quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS
Incoherent non-Fermi liquid scattering in a Kondo lattice
One of the most notorious non-Fermi liquid properties of both archetypal
heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is
an electrical resistivity that evolves linearly with temperature, T. In the
heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the
first indications of the presence of a zero-temperature instability, or quantum
critical point. Here, we report the observation of a unique control parameter
of T-linear scattering in CeCoIn5, found through systematic chemical
substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce
sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5
is strongly dependent on the f-electron configuration of the R ion, whereas two
other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are
not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature
of incoherent scattering centers in the Kondo lattice, which provides insight
into the anomalous scattering rate synonymous with quantum criticality [7].Comment: 4 pages, 3 figures (published version
- …