440 research outputs found

    Magnetic-Field Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    We report low-temperature calorimetric, magnetic and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh2_2Si2_2 (TN={T_N =} 70 mK) as a function of magnetic field BB. While for fields exceeding the critical value Bc0{B_{c0}} at which TN0{T_N\to0} the low temperature resistivity shows an AT2{AT^2} dependence, a 1/(BBc0){1/(B-B_{c0})} divergence of A(B){A(B)} upon reducing BB to Bc0{B_{c0}} suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let

    Hall-effect evolution across a heavy-fermion quantum critical point

    Full text link
    A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question concerns whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin density wave (SDW) type, or suddenly as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (RHR_H) - a measure of the Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. RHR_H undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur

    The break up of heavy electrons at a quantum critical point

    Full text link
    The point at absolute zero where matter becomes unstable to new forms of order is called a quantum critical point (QCP). The quantum fluctuations between order and disorder that develop at this point induce profound transformations in the finite temperature electronic properties of the material. Magnetic fields are ideal for tuning a material as close as possible to a QCP, where the most intense effects of criticality can be studied. A previous study on theheavy-electron material YbRh2Si2YbRh_2Si_2 found that near a field-induced quantum critical point electrons move ever more slowly and scatter off one-another with ever increasing probability, as indicated by a divergence to infinity of the electron effective mass and cross-section. These studies could not shed light on whether these properties were an artifact of the applied field, or a more general feature of field-free QCPs. Here we report that when Germanium-doped YbRh2Si2YbRh_2Si_2 is tuned away from a chemically induced quantum critical point by magnetic fields there is a universal behavior in the temperature dependence of the specific heat and resistivity: the characteristic kinetic energy of electrons is directly proportional to the strength of the applied field. We infer that all ballistic motion of electrons vanishes at a QCP, forming a new class of conductor in which individual electrons decay into collective current carrying motions of the electron fluid.Comment: Pdf files of article available at http://www.physics.rutgers.edu/~coleman/online/breakup.pdf, pdf file of news and views article available at http://www.physics.rutgers.edu/~coleman/online/nvbreakup.pd

    YbRh2Si2: Quantum tricritical behavior in itinerant electron systems

    Full text link
    We propose that proximity of the first-order transition manifested by the quantum tricritical point (QTCP) explains non-Fermi-liquid properties of YbRh2Si2. Here, at the QTCP, a continuous phase transition changes into first order at zero temperature. The non-Fermi-liquid behaviors of YbRh2Si2 are puzzling in two aspects; diverging ferromagnetic susceptibility at the antiferromagnetic transition and unconventional power-law dependence in thermodynamic quantities. These puzzles are solved by an unconventional criticality derived from our spin fluctuation theory for the QTCP.Comment: 4 pages, 3 figure

    Tuning Chemical and Morphological Properties of Ceria Nanopowders by Mechanochemistry

    Get PDF
    Cerium oxide powders are widely used and are of fundamental importance in catalytic pollution control and energy production due to the unique chemical properties of CeO2. Processing steps involved in catalyst preparation, such as high-temperature calcination or mechanical milling processes, can alter the morphological and chemical properties of ceria, heavily affecting its final properties. Here, we focus on the tuning of CeO2 nanopowder properties by mild- and high-energy milling processes, as the mechanochemical synthesis is gaining increasing attention as a green synthesis method for catalyst production. The textural and redox properties were analyzed by an array of techniques to follow the aggregation and comminution mechanisms induced by mechanical stresses, which are more prominent under high-energy conditions but strongly depend on the starting properties of the ceria powders. Simultaneously, the evolution of surface defects and chemical properties was followed by Raman spectroscopy and H2 reduction tests, ultimately revealing a trade-off effect between structural and redox properties induced by the mechanochemical action. The mild-energy process appears to induce the largest enhancement in surface properties while maintaining bulk properties of the starting materials, hence confirming its effectiveness for its exploitation in catalysis

    Enhanced Impurity Scattering due to Quantum Critical Fluctuations

    Full text link
    It is shown on the basis of the lowest order perturbation expansion with respect to critical fluctuations that the critical fluctuations give rise to an enhancement of the potential scattering of non-magnetic impurities. This qualitatively accounts for the enhancement of the resistivity due to impurities which has been observed in variety of systems near the quantum critical point, while the higher order processes happen to give much larger enhancement as seen from the Ward identity arguments. The cases with dynamical critical exponent zz=2 and zz=3 are discussed explicitly.Comment: Submitted to J. Phys. Soc. Jpn. on 27 September, 200

    Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2

    Full text link
    We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu2_2Si2_2. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level EFE_F. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NCA), including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu2_2Si2_2 can be described by single-impurity Kondo physics down to T5T \approx 5 K.Comment: 4 pages, 3 figure

    Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis

    Full text link
    We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum critical point, in the marginal case of two dimensions (d=2,z=2). Up to next-to-leading order in the number of components (N) of the field, we find that logarithmic corrections do not lead to an enhancement of the Landau damping. This is in agreement with a renormalization-group analysis, for arbitrary N. Hence, the logarithmic effects are unable to account for the behavior reportedly observed in inelastic neutron scattering experiments on CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment (local approximation) of this theory, and find that only subdominant corrections to the Landau damping are obtained within this approximation, in contrast to recent claims.Comment: 15 pages, 8 figure

    Break up of heavy fermions at an antiferromagnetic instability

    Full text link
    We present results of high-resolution, low-temperature measurements of the Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2. They support earlier conclusions of an electronic (Kondo-breakdown) quantum critical point concurring with a field induced antiferromagnetic one. We also discuss the detachment of the two instabilities under chemical pressure. Volume compression/expansion (via substituting Rh by Co/Ir) results in a stabilization/weakening of magnetic order. Moderate Ir substitution leads to a non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor screened by the Kondo effect. The so-derived zero-temperature global phase diagram promises future studies to explore the nature of the Kondo breakdown quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS

    Incoherent non-Fermi liquid scattering in a Kondo lattice

    Full text link
    One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the first indications of the presence of a zero-temperature instability, or quantum critical point. Here, we report the observation of a unique control parameter of T-linear scattering in CeCoIn5, found through systematic chemical substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5 is strongly dependent on the f-electron configuration of the R ion, whereas two other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature of incoherent scattering centers in the Kondo lattice, which provides insight into the anomalous scattering rate synonymous with quantum criticality [7].Comment: 4 pages, 3 figures (published version
    corecore