501 research outputs found

    Rate of heat extraction controller for environmental control

    Get PDF
    Automatic control device measures a physiological parameter related to heat production and conditions it to control the heat removal capacity of a watercooled environmental control suit

    Automatic controllers for the Apollo LCG Final report

    Get PDF
    Automatic controllers for liquid cooling garment of Apollo full pressure sui

    Cycles in metabolism and heat loss

    Get PDF
    Using calorimetric techniques, subjects' metabolism, thermoregulation, and body temperatures were monitored continuously for 24-hour days, using three types of experimental routines. A water cooling garment (WCG) was used for direct calorimetry, while partitional calorimetry was used to establish a non-suited comparison for one of the routines. In this replicated routine, called the quiet day, the subjects were sedentary throughout the daytime hours and slept normally at night. Results indicate that the WCG may act to reduce 24-hour total oxygen consumption (VO2) or heat production, possibly due to the lowered energy cost of thermoregulation

    Shuttle derived atmospheric density model. Part 2: STS atmospheric implications for AOTV trajectory analysis, a proposed GRAM perturbation density model

    Get PDF
    A perturbation model to the Marshall Space Flight Center (MSFC) Global Reference Atmosphere Model (GRAM) was developed for use in the Aeroassist Orbital Transfer Vehicle (AOTV) trajectory and analysis. The model reflects NASA Space Shuttle experience over the first twelve entry flights. The GRAM was selected over the Air Force 1978 Reference Model because of its more general formulation and wider use throughout NASA. The add-on model, a simple scaling with altitude to reflect density structure encountered by the Shuttle Orbiter was selected principally to simplify implementation. Perturbations, by season, can be utilized to minimize the number of required simulations, however, exact Shuttle flight history can be exercised using the same model if desired. Such a perturbation model, though not meteorologically motivated, enables inclusion of High Resolution Accelerometer Package (HiRAP) results in the thermosphere. Provision is made to incorporate differing perturbations during the AOTV entry and exit phases of the aero-asist maneuver to account for trajectory displacement (geographic) along the ground track

    Shuttle derived atmospheric density model. Part 1: Comparisons of the various ambient atmospheric source data with derived parameters from the first twelve STS entry flights, a data package for AOTV atmospheric development

    Get PDF
    The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments

    Programmed-pressure air supply for positive-pressure breathing system

    Get PDF
    Motor-driven cam varies height of mercury column connected to loading diaphragm of pressure-regulating valve. Air supplied to open-loop, positive pressure breathing system is controlled so repetitive pressure--time profiles can be obtained during every insufflation--exhaust cycle

    Trajectory reconstruction and aerodynamic results from the first Discovery flight, STS-14(41-D)

    Get PDF
    Trajectory reconstruction results for the first Discovery flight are presented. Spacecraft dynamic measurements from IMU2 were utilized in conjunction with the ground based tracking data from two S-band stations, eight C-band, and five cameras at Edwards Air Force Base to determine the spacecraft trajectory from epoch through roll-out on Runway 17. Specifics as to the trajectory reconstruction are discussed in Section 1. The final inertial profile is BT14NO2/UN=169750N. Merging of this file with the final LAIRS atmosphere is discussed in Section 2. The final Extended BET is ST14BET/UN=274885C. Section 3 presents plots of relevant parameters from the AEROBET as well as aerodynamic performance comparison results. High frequency files for maneuver extraction were also generated as discussed in Section 4. Appendices are attached which contain: (1) spacecraft and physical parameters utilized, (2) final residuals obtained from the data fitting process, (3) listing of trajectory parameters, and (4) archival information

    Challenger STS-17 (41-G) post-flight best estimate trajectory products: Development and summary results

    Get PDF
    Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels

    Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)

    Get PDF
    The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated
    • …
    corecore