12 research outputs found

    High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis

    Get PDF
    We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS), identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7), presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus

    Full-length messenger RNA sequences greatly improve genome annotation

    Get PDF
    Background: Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome. We have mapped these transcripts to their exact chromosomal locations and, using alignment programs, have created gene models that provide a reference set for this organism. Results: Approximately 35% of the transcripts indicated that previously annotated genes needed modification, and 5% of the transcripts represented newly discovered genes. We also discovered that multiple transcription initiation sites appear to be much more common than previously known, and we report numerous cases of alternative mRNA splicing. We include a comparison of different alignment software and an analysis of how the transcript data improved the previously published annotation. Conclusions: Our results demonstrate that sequencing of large numbers of full-length transcripts followed by computational mapping greatly improves identification of the complete exon structures of eukaryotic genes. In addition, we are able to find numerous introns in the untranslated regions of the genes

    Insights into corn genes derived from large-scale cDNA sequencing

    Get PDF
    We present a large portion of the transcriptome of Zea mays, including ESTs representing 484,032 cDNA clones from 53 libraries and 36,565 fully sequenced cDNA clones, out of which 31,552 clones are non-redundant. These and other previously sequenced transcripts have been aligned with available genome sequences and have provided new insights into the characteristics of gene structures and promoters within this major crop species. We found that although the average number of introns per gene is about the same in corn and Arabidopsis, corn genes have more alternatively spliced isoforms. Examination of the nucleotide composition of coding regions reveals that corn genes, as well as genes of other Poaceae (Grass family), can be divided into two classes according to the GC content at the third position in the amino acid encoding codons. Many of the transcripts that have lower GC content at the third position have dicot homologs but the high GC content transcripts tend to be more specific to the grasses. The high GC content class is also enriched with intronless genes. Together this suggests that an identifiable class of genes in plants is associated with the Poaceae divergence. Furthermore, because many of these genes appear to be derived from ancestral genes that do not contain introns, this evolutionary divergence may be the result of horizontal gene transfer from species not only with different codon usage but possibly that did not have introns, perhaps outside of the plant kingdom. By comparing the cDNAs described herein with the non-redundant set of corn mRNAs in GenBank, we estimate that there are about 50,000 different protein coding genes in Zea. All of the sequence data from this study have been submitted to DDBJ/GenBank/EMBL under accession numbers EU940701–EU977132 (FLI cDNA) and FK944382-FL482108 (EST)

    Full-length

    No full text
    Background: Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome. We have mapped these transcripts to their exact chromosomal locations and, using alignment programs, have created gene models that provide a reference set for this organism

    Graphical representation of the high quality linkage map of <i>M. sinensis</i>.

    No full text
    <p>The image is produced with CheckMatrix (<a href="http://www.atgc.org/XLinkage/" target="_blank">http://www.atgc.org/XLinkage/</a>) to validate and verify the quality of the composite map using BIT score (low-left diagonal) and REC score (top-right diagonal). Red color represents tight linkage; yellow represents weak linkage; green to blue represents no linkage. The red along the diagonal, but lack of red off the diagonal, indicate that marker assignments and orders in the 19 linkage groups are supported by both JoinMap and CheckMatrix.</p

    Sequence analysis and single nucleotide polymorphism (SNP) marker calling.

    No full text
    <p>(A) Processing workflow of the NGS data analysis. (B) Distribution of the alignment lengths for <i>Miscanthus</i> reads matching the sorghum genome. (C) Correlation between the numbers of reads per restriction site for two plants: Mb111 and P62, having the largest number of reads. Only reads mapped in chromosome 1 of sorghum were used as an example. Similar correlations were observed for almost all other pairs of plants and other chromosomes. (D) Coverage of SNPs by plants.</p

    Linkage length and marker distribution of the composite genetic map.

    No full text
    <p>The linkage groups (LGs) are named from LG1 to LG19 in agreement with their syntenic relationship to the already defined 10 sorghum chromosomes. On each linkage, the gray or black lines represent mapped markers; the right-shifted red lines signify framework markers. The triangle next to each linkage group represents tentative centromere position of the linkage. The details of the composite map were given in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033821#pone.0033821.s001" target="_blank">Table S1</a>.</p
    corecore