1,857 research outputs found

    Solving Cosmological Problems of Supersymmetric Axion Models in an Inflationary Universe

    Full text link
    We revisit inflationary cosmology of axion models in the light of recent developments on the inflaton decay in supergravity. We find that all the cosmological difficulties, including gravitino, axino overproduction and axionic isocurvature fluctuation, can be avoided if the saxion field has large initial amplitude during inflation and decays before big-bang nucleosynthesis.Comment: 19 pages, 4 figure

    Measuring the effective complexity of cosmological models

    Get PDF
    We introduce a statistical measure of the effective model complexity, called the Bayesian complexity. We demonstrate that the Bayesian complexity can be used to assess how many effective parameters a set of data can support and that it is a useful complement to the model likelihood (the evidence) in model selection questions. We apply this approach to recent measurements of cosmic microwave background anisotropies combined with the Hubble Space Telescope measurement of the Hubble parameter. Using mildly non-informative priors, we show how the 3-year WMAP data improves on the first-year data by being able to measure both the spectral index and the reionization epoch at the same time. We also find that a non-zero curvature is strongly disfavored. We conclude that although current data could constrain at least seven effective parameters, only six of them are required in a scheme based on the Lambda-CDM concordance cosmology.Comment: 9 pages, 4 figures, revised version accepted for publication in PRD, updated with WMAP3 result

    Statistical Properties of Exciton Fine Structure Splittings and Polarization Angles in Quantum Dot Ensembles

    Full text link
    We propose an effective model to describe the statistical properties of exciton fine structure splitting (FSS) and polarization angle of quantum dot ensembles (QDEs). We derive the distributions of FSS and polarization angle for QDEs and show that their statistical features can be fully characterized using at most three independent measurable parameters. The effective model is confirmed using atomistic pseudopotential calculations as well as experimental measurements for several rather different QDEs. The model naturally addresses three fundamental questions that are frequently encountered in theories and experiments: (I) Why the probability of finding QDs with vanishing FSS is generally very small? (II) Why FSS and polarization angle differ dramatically from QD to QD? and (III) Is there any direct connection between FSS, optical polarization and the morphology of QDs? The answers to these fundamental questions yield a completely new physical picture for understanding optical properties of QDEs.Comment: 6 pages, 3 figures, 1 tabl

    Neutrinos and Future Concordance Cosmologies

    Full text link
    We review the free parameters in the concordance cosmology, and those which might be added to this set as the quality of astrophysical data improves. Most concordance parameters encode information about otherwise unexplored aspects of high energy physics, up to the GUT scale via the "inflationary sector," and possibly even the Planck scale in the case of dark energy. We explain how neutrino properties may be constrained by future astrophysical measurements. Conversely, future neutrino physics experiments which directly measure these parameters will remove uncertainty from fits to astrophysical data, and improve our ability to determine the global properties of our universe.Comment: Proceedings of paper given at Neutrino 2008 meeting (by RE

    Communicating cosmology with multisensory metaphorical experiences

    Get PDF
    We present a novel approach to communicating abstract concepts in cosmology and astrophysics in a more accessible and inclusive manner. We describe an exhibit aiming at creating an immersive, multisensory metaphorical experience of an otherwise imperceptible physical phenomenon-dark matter. Human-Computer Interaction experts and physicists co-created a multisensory journey through dark matter by exploiting the latest advances in haptic and olfactory technology. We present the concept design of a pilot and a second, improved event, both held at the London Science Museum, including the practical setup of the multisensory dark matter experience, the delivery of sensory stimulation and preliminary insights from users' feedback

    A robust estimate of the Milky Way mass from rotation curve data

    Get PDF
    We present a new estimate of the mass of the Milky Way, inferred via a Bayesian approach by making use of tracers of the circular velocity in the disk plane and stars in the stellar halo, as from the publicly available galkin compilation. We use the rotation curve method to determine the dark matter distribution and total mass under different assumptions for the dark matter profile, while the total stellar mass is constrained by surface stellar density and microlensing measurements. We also include uncertainties on the baryonic morphology via Bayesian model averaging, thus converting a potential source of systematic error into a more manageable statistical uncertainty. We evaluate the robustness of our result against various possible systematics, including rotation curve data selection, uncertainty on the Sun's velocity V0, dependence on the dark matter profile assumptions, and choice of priors. We find the Milky Way's dark matter virial mass to be log10M200DM/ Mo\u2d9 = 11.92+0.06-0.05(stat)\ub10.28\ub10.27(syst) (M200DM=8.3+1.2-0.9(stat) 71011 Mo\u2d9). We also apply our framework to Gaia DR2 rotation curve data and find good statistical agreement with the above results

    Communicating cosmology with multisensory metaphorical experiences

    Get PDF
    We present a novel approach to communicating abstract concepts in cosmology and astrophysics in a more accessible and inclusive manner. We describe an exhibit aiming at creating an immersive, multisensory metaphorical experience of an otherwise imperceptible physical phenomenon-dark matter. Human-Computer Interaction experts and physicists co-created a multisensory journey through dark matter by exploiting the latest advances in haptic and olfactory technology. We present the concept design of a pilot and a second, improved event, both held at the London Science Museum, including the practical setup of the multisensory dark matter experience, the delivery of sensory stimulation and preliminary insights from users' feedback

    Germination performance of alien and native species could shape community assembly of temperate grasslands under different temperature scenarios

    Get PDF
    Rising temperatures due to climate change are expected to interplay with biological invasions, and may enhance the spread and growth of some alien species upon arrival in new areas. To successfully invade, a plant species needs to overcome multiple biological barriers. Among the crucial life stages, seed germination greatly contributes to the final species assembly of a plant community. Several studies have suggested that alien plant success is related to their high seed germination and longevity in the soil. Hence, our aim is to test if the germination potential of alien seeds present in the seed bank will be further enhanced by future warming in temperate dry grasslands, an ecosystem that is among those most prone to biological invasions. We designed a laboratory germination experiment at two temperatures (20 and 28 °C), to simulate an early or late heat wave in the growing season, using seeds from nine common grassland Asteraceae species, including native, archaeophyte and neophyte species. The test was performed on both single and mixed pools of these categories of species, using a full-factorial orthogonal design. The warmer germination temperature promoted neophyte success by increasing germination probability and germination speed, while negatively impacting these parameters in seeds of native species. The co-occurrence of native and archaeophyte seeds at the lower temperature limited the invasiveness of neophytes. These results provide important information on future management actions aimed at containing alien plant invasions, by improving our knowledge on the possible seed-bank response and interaction mechanisms of common species occurring in disturbed natural areas or restored sites. Graphical abstract: Summary of the experimental results. The colour of the flowers represent the status, divided as native (blue), neophyte (red) and archaeophyte (green). Each flower symbol represents the species pool for each plant category (i.e. NA = Buphthalmum salicifolium, Carlina vulgaris, Centaurea scabiosa; NE = Artemisia annua, Symphyotrichum novi-belgii, Senecio inaequidens; AR = Centaurea cyanus, Cichorium intybus, Tripleurospermum inodorum). The number of flowers represent the germination percentage of the various category assembly. In the columns are divided the various combination. From up to bottom the trend of germination percentage at 20 and 28 °C are shown. [Figure not available: see fulltext.]

    Engineering of quantum dot photon sources via electro-elastic fields

    Full text link
    The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants

    Get PDF
    This study shows the direct effect of atmospheric particulate matter on plant growth. Tomato (Solanum lycopersicum L.) plants were grown for 18. d directly on PM10 collected on quartz fiber filters. Organic and elemental carbon and polycyclic aromatic hydrocarbons (PAHs) contents were analyzed on all the tested filters. The toxicity indicators (i.e., seed germination, root elongation, shoot and/or fresh root weight, chlorophyll and carotenoids content) were quantified to study the negative and/or positive effects in the plants via root uptake. Substantial differences were found in the growth of the root apparatus with respect to that of the control plants. A 17-58% decrease of primary root elongation, a large amount of secondary roots and a decrease in shoot (32%) and root (53-70%) weights were found. Quantitative analysis of the reactive oxygen species (ROS) indicated that an oxidative burst in response to abiotic stress occurred in roots directly grown on PM10, and this detrimental effect was also confirmed by the findings on the chlorophyll content and chlorophyll-to-carotenoid ratio
    corecore