813 research outputs found

    Models for Modules

    Full text link
    We recall the structure of the indecomposable sl(2) modules in the Bernstein-Gelfand-Gelfand category O. We show that all these modules can arise as quantized phase spaces of physical models. In particular, we demonstrate in a path integral discretization how a redefined action of the sl(2) algebra over the complex numbers can glue finite dimensional and infinite dimensional highest weight representations into indecomposable wholes. Furthermore, we discuss how projective cover representations arise in the tensor product of finite dimensional and Verma modules and give explicit tensor product decomposition rules. The tensor product spaces can be realized in terms of product path integrals. Finally, we discuss relations of our results to brane quantization and cohomological calculations in string theory.Comment: 18 pages, 6 figure

    String splitting and strong coupling meson decay

    Full text link
    We study the decay of high spin mesons using the gauge/string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 SYM with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.Comment: 17 pages, 2 figures. V2: References added. V3: Minor correction

    Batalin-Vilkovisky gauge-fixing of a chiral two-form in six dimensions

    Get PDF
    We perform the gauge-fixing of the theory of a chiral two-form boson in six dimensions starting from the action given by Pasti, Sorokin and Tonin. We use the Batalin-Vilkovisky formalism, introducing antifields and writing down an extended action satisfying the classical master equation. Then we gauge-fix the three local symmetries of the extended action in two different ways.Comment: 15 pages, latex, no figures, version accepted by Class. Quant. Gra

    Complement activation at the motor end-plates in amyotrophic lateral sclerosis

    Get PDF
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease with no available therapy. Components of the innate immune system are activated in the spinal cord and central nervous system of ALS patients. Studies in the SOD1(G93A) mouse show deposition of C1q and C3/C3b at the motor end-plate before neurological symptoms are apparent, suggesting that complement activation precedes neurodegeneration in this model. To obtain a better understanding of the role of complement at the motor end-plates in human ALS pathology, we analyzed post-mortem tissue of ALS donors for complement activation and its regulators. METHODS: Post-mortem intercostal muscle biopsies were collected at autopsy from ALS (n = 11) and control (n = 6) donors. The samples were analyzed for C1q, membrane attack complex (MAC), CD55, and CD59 on the motor end-plates, using immunofluorescence or immunohistochemistry. RESULTS: Here, we show that complement activation products and regulators are deposited on the motor end-plates of ALS patients. C1q co-localized with neurofilament in the intercostal muscle of ALS donors and was absent in controls (P = 0.001). In addition, C1q was found deposited on the motor end-plates in the intercostal muscle. MAC was also found deposited on motor end-plates that were innervated by nerves in the intercostal muscle of ALS donors but not in controls (P = 0.001). High levels of the regulators CD55 and CD59 were detected at the motor end-plates of ALS donors but not in controls, suggesting an attempt to counteract complement activation and prevent MAC deposition on the end-plates before they are lost. CONCLUSIONS: This study provides evidence that complement activation products are deposited on innervated motor end-plates in the intercostal muscle of ALS donors, indicating that complement activation may precede end-plate denervation in human ALS. This study adds to the understanding of ALS pathology in man and identifies complement as a potential modifier of the disease process

    Massless BTZ black holes in minisuperspace

    Full text link
    We study aspects of the propagation of strings on BTZ black holes. After performing a careful analysis of the global spacetime structure of generic BTZ black holes, and its relation to the geometry of the SL(2,R) group manifold, we focus on the simplest case of the massless BTZ black hole. We study the SL(2,R) Wess-Zumino-Witten model in the worldsheet minisuperspace limit, taking into account special features associated to the Lorentzian signature of spacetime. We analyse the two- and three-point functions in the pointparticle limit. To lay bare the underlying group structure of the correlation functions, we derive new results on Clebsch-Gordan coefficients for SL(2,R) in a parabolic basis. We comment on the application of our results to string theory in singular time-dependent orbifolds, and to a Lorentzian version of the AdS/CFT correspondence.Comment: 28 pages, v2: reference adde

    Extended SL(2,R)/U(1) characters, or modular properties of a simple non-rational conformal field theory

    Full text link
    We define extended SL(2,R)/U(1) characters which include a sum over winding sectors. By embedding these characters into similarly extended characters of N=2 algebras, we show that they have nice modular transformation properties. We calculate the modular matrices of this simple but non-trivial non-rational conformal field theory explicitly . As a result, we show that discrete SL(2,R) representations mix with continuous SL(2,R) representations under modular transformations in the coset conformal field theory. We comment upon the significance of our results for a general theory of non-rational conformal field theories.Comment: JHEP style, 25 pages, 2 figures, v2: minor corrections, reference added, version to appear in JHE

    Thermal radiation in non-static curved spacetimes: quantum mechanical path integrals and configuration space topology

    Full text link
    A quantum mechanical path integral derivation is given of a thermal propagator in non-static Gui spacetime. The thermal nature of the propagator is understood in terms of homotopically non-trivial paths in the configuration space appropriate to tortoise coordinates. The connection to thermal emission from collapsing black holes is discussed.Comment: 20 pages, major revised version, 9 figures, new titl

    Productiemetingen aan mosselzaad-invang-installaties (MZI's) 2009, 2010, 2011: technisch rapport project meerjarige effect- en productiemetingen aan MZI's in de westelijke Waddenzee, Oosterschelde en Voordelta

    Get PDF
    Ter onderbouwing van de beschrijving van de effecten van de MZI’s op de ecosystemen van de Oosterschelde en Waddenzee zijn gegevens nodig van aanwas, groei, sterfte en totale biomassa van MZI-mosselen gedurende het seizoen. Deze gegevens zijn tevens nodig als input voor modelberekeningen. Met toestemming van de MZI-ondernemers zijn metingen verricht aan bestaande MZI’s, met als doel: het bepalen van individuele groei (in lengte en gewicht) van zaadmosselen; het bepalen van de toename in aantallen en biomassa van zaadmosselen per vierkante meter net of per meter touwlengte; het bepalen van de biomassa aan MZI-systemen gedurende het seizoen. Deze metingen zijn verricht in de Oosterschelde en Waddenzee

    Interactions of Generated Weather Raster and Soil Profiles in Simulating Adaptive Crop Management and Consequent Yields for Five Major Crops throughout a Region in Southern Germany

    Get PDF
    Klimaanpassung und MitigationThe ability of bioeconomic simulation modelling to realistically predict agricultural adaptation is limited by the degree of detail in crucial model components. Model robustness must be tested before localized calibrations can be applied to regions of heterogenous environmental conditions. The agent-based model FARMACTOR was used to simulate the timing of field management actions (planting, harvest etc.) in response to environmental conditions, and consequent yields of winter wheat, barley and rapeseed, spring barley and silage maize as the predominant crops in a distinct region of Germany, by linking weather data and the crop growth simulation model EXPERT-N. The integrated models were calibrated to observed experimental data and official phenological observations and then run from 1990 to 2009, forced with climate data from ERA-interim Reanalyses data which was downscaled with the Weather and Research Forecast (WRF) model to a 12 X 12 km² grid. Variability in regional soils was replicated with 10 different soil profiles mapped at 1/25,000 scale. The nature of the forcing climate data dictates temporal aggregation for analysis, so that validity is examined by comparing mean simulated planting and harvest dates and yields to official records in the area. The mean predicted planting dates are very close to observations over the period, within a few days of observations, but show less variance. Harvest dates are accurately predicted as well, within one to two weeks, and the variances are closer to observations. Predicted winter wheat yields are well simulated in comparison to observed data, but maize yields are underestimated, while winter and spring barley and winter rapeseed yields are greater than observed district ("Landkreis") yields. The degree of variance in simulated yields is acceptable in wheat, winter barley and maize, but excessive in spring barley and winter rapeseed. Cross-sectional examination of yields shows that the different soil profiles are responsible for more yield variance than simulated weather cells in all crops. While the coupled models appear accurate in predicting crop management dates and physiological development, the inaccuracy in yields in all crops except winter wheat calls into question the reliability of the integrated models when applied, as is, outside of calibration conditions. That soil parameterization is responsible for more variance than generated weather is helpful in seeking to improve performance and encouraging in terms of the method of weather generation. Reliable extension of the coupled models to include all soils in an area together with artificial spatial climatic variability may require regionalized calibration to increase crop model stability
    • …
    corecore