21 research outputs found

    Biodiversity and Sustainable Development

    Get PDF
    Prekomjerno iskorištavanje tla, zaliha vode i izvora energije ugrožava mogućnosti proizvodnje hrane i drugih proizvoda ključnih za opstanak čovjeka te nepovratno mijenja Zemlju kao cjeloviti ekosustav. Održivi razvoj je razvoj koji uspješno povezuje gospodarske, društvene i okolišne odrednice u okvirima institucionalnih, političkih, pravnih i tehnoloških sustava. Održivi razvoj podupiru tri glavna čimbenika: održiva poljoprivredna proizvodnja, poboljšanje socio-ekonomskih odnosa i napredak tehnologije. Biološka raznolikost temelj je održive poljoprivredne proizvodnje i podrazumijeva tri glavne kategorije: genetičku raznolikost, raznolikost vrsta i raznolikost ekosustava. Neki autori ovdje pridodaju i četvrtu kategoriju - funkcijsku raznolikost. Biološka raznolikost ishodište je ekonomskih, estetskih, zdravstvenih i kulturnih povlastica. Globalna komunikacija i razmjena dobara imaju snažan utjecaj na biološku raznolikost. Jedan od uzroka smanjenja biološke raznolikosti je uništavanje prirodnih staništa zbog urbanizacije i širenja poljoprivrednih površina. Ugroza autohtone biološke raznolikosti rezultat je i migracija određenih vrsta u druga staništa zbog različitih aktivnosti čovjeka kao i uvođenja alohtonih vrsta.Excessive exploitation of soil, water reserves and energy sources endanger our ability to produce food and other products that are essential for survival of humans, and irreversibly change the Earth as integral ecosystem. Sustainable development successfully connects determinants of economy, society and environment which correspond to institutional, political, legal and technological systems. Sustainable development is supported by three main factors: sustainable agriculture, improvement of social-economic relationships, and progress in technology. Biological diversity is basis for sustainable agriculture and imply three main categories: genetic diversity, species diversity and ecosystem diversity. Functional diversity is added to these three categories by some authors. Biodiversity provides a source of economic, aesthetic, health and cultural privileges. Global communication and exchange of goods have strong impact on biodiversity. Destruction of natural habitats due to urbanization and expansion of arable areas is just one cause of biodiversity reduction. Imperil of indigenous biodiversity is also result of migration of some species to other habitats as result of human activities as well as introduction of allochthonous species

    Catabolism of Amino Acids in the Cells of Lactic Acid Bacteria

    Get PDF
    Bakterije mliječne kiseline su auksotrofni industrijski mikroorganizmi i uzgajaju se u hranjivim podlogama kompleksnog sastava. Između ostalih sastojaka, u hranjive podloge u kojima se uzgajaju ove bakterije potrebno je dodati i određene aminokiseline. Aminokiseline s razgranatim bočnim lancem, leucin, izoleucin i valin, moraju se dodati u podloge u kojima rastu bakterije mliječne kiseline. Potreba za preostalim aminokiselinama zavisi o vrsti i soju bakterije pomoću koje se provodi određeni bioproces. Tijekom transporta aminokiselina u stanice bakterija mliječne kiseline i razgradnje ovih izvora dušika i ugljika formira se elektrokemijski gradijent, pridobiva se metabolička energija, regeneriraju kofaktori enzima, ublažava se učinak proizvodnje mliječne kiseline tj. snižavanja pH vrijednosti, stanice se prilagođavaju osmotskom šoku kao i uvjetima okoline u stacionarnoj fazi rasta. Aminokiseline i/ili (među)spojevi nastali tijekom katabolizma ovih supstrata ishodišni su spojevi za proizvodnju: drugih aminokiselina i masnih kiselina, koje se ugrađuju u membrane; α-keto kiselina i α-hidroksi kiselina, koje mogu imati i ulogu siderofora; laktona; nukleinskih kiselina; proteina; lipida i poliamina. Katabolizam aminokiselina u stanicama bakterija mliječne kiseline nedovoljno je poznat i uglavnom se istražuje u cilju smanjenja koncentracije nepoželjnih amina u fermentiranim proizvodima.Lactic acid bacteria are auxotrophic industrial microorganisms usually cultivated in complex growth media. Among other ingredients, in the media for cultivation of the bacteria, particular amino acids need to be added. Branched-chain amino acids, leucine, isoleucine and valine, have to be added in the media in which lactic acid bacteria are expected to grow. Requirement for the rest of amino acids depends on the species and strain of the bacteria that have been used in defi ned bioprocess. During transport of amino acids in the lactic acid bacteria cells and degradation of this nitrogen and carbon sources, electrochemical gradient is formed, metabolic energy is yielded, enzyme cofactors are regenerated, effect of produced lactic acid i.e. reduction of pH value is moderated, the cells are adapted to osmotic shock as well as to stationary growth phase conditions. Amino acids and/or (intermediate) compounds generated during their catabolism represent precursors for production of: other aminoacids and fatty acids, which can be incorporated in membranes; α-keto acids and α-hydroxy acids, which can also act as siderophores; lactones; nucleic acids; lypides and polyamines. Amino acids catabolism in lactic acid bacteria cells is not known enough and it is mainly investigated in order to reduce concentration of undesired amines in fermented food

    Modeliranje utjecaja različitih supstrata i temperature na rast i proizvodnju mliječne kiseline tijekom šaržnog uzgoja bakterije Lactobacillus amylovorus DSM 20531T

    Get PDF
    Amylolytic lactic acid bacterium Lactobacillus amylovorus DSM 20531T utilised glucose, sucrose and starch as a sole carbon and energy source. The three substrates were completely depleted from MRS medium during batch cultivations carried out in a laboratory scale stirred tank bioreactor at constant temperature (40 °C) and pH value (5.5). Under the tested conditions, the bacterium was capable of conducting simultaneously starch hydrolysis and fermentation. A mixture of two stereoisomers, D-(–)- and L-(+)-lactic acid, was produced in all cases by highly efficient homofermentative bioprocess with 0.93 to 1 g of lactate produced per g of total (consumed) substrate. The effect of temperature on the kinetics of cell growth and lactic acid production by the amylolytic strain in the starch-containing medium was also investigated. Efficient simultaneous saccharification and fermentation (SSF) was obtained at 35, 40 and 45 °C with completely degraded complex carbohydrate in 8 to 12 h and the product yield coefficient in the range from 0.91 to 0.93 g/g. Maximum values for substrate consumption rate (0.89 h^–1), maximum specific growth rate (0.87 h^–1), product formation rate (2.01 h^–1), and productivity of lactic acid (1.45 g/(L·h)) were obtained at 45 °C, while maximum biomass concentration (4.38 g/L) was attained at 40 °C. The ratio of the two stereoisomeric forms of produced lactic acid was strongly affected by the temperature. Unstructured kinetic model was used to describe the consumption of the three substrates, bacterial biomass formation and lactic acid production by L. amylovorus DSM 20531T. The dependence of biokinetic parameters on temperature was described by cardinal temperature model. The applied models successfully predicted all experimental data.Amilolitička bakterija mliječne kiseline Lactobacillus amylovorus DSM 20531T može koristiti glukozu, saharozu ili škrob kao jedini izvor ugljika i energije. Tijekom šaržnog uzgoja bakterije u laboratorijskom bioreaktoru s miješalom pri konstantnoj temperaturi (40 °C) i pH-vrijednosti (5,5) iz MRS podloge iskorištena su sva tri supstrata. U odabranim uvjetima bakterija provodi simultanu hidrolizu škroba i fermentaciju. U sva tri slučaja homofermentativnim bioprocesom proizvedena je smjesa dvaju stereoizomera mliječne kiseline, D-(-)- i L-(+)-mliječne kiseline, uz učinkovitost od 0,93 do 1 g laktata po gramu ukupnog supstrata. U hranjivoj podlozi sa škrobom istraživan je i utjecaj temperature uzgoja na kinetiku rasta stanica i proizvodnju mliječne kiseline. Učinkovita simultana saharifikacija i fermentacija (SSF) odvijale su se pri temperaturama uzgoja od 35, 40 i 45 °C, kada je kompleksni ugljikohidrat potpuno razgrađen tijekom 8-12 h uzgoja uz koeficijent konverzije supstrata u proizvod od 0,91 do 0,93 g/g. Maksimalna brzina potrošnje supstrata (0,89 h^-1), maksimalna specifična brzina rasta (0,87 h^-1), brzina nastajanja proizvoda (2,01 h^-1) i produktivnost proizvodnje mliječne kiseline (1,45 g/(L·h)) postignute su pri temperaturi uzgoja od 45 °C, dok je maksimalna koncentracija biomase dobivena pri 40 °C. Temperatura uzgoja uvelike utječe na omjer dvaju proizvedenih stereoizomera mliječne kiseline. Potrošnja triju supstrata, rast bakterijske biomase i proizvodnja mliječne kiseline s pomoću L. amylovorus DSM 20531T definirani su nestrukturiranim kinetičkim modelom. Ovisnost biokinetičkih parametara o temperaturi definirana je osnovnim temperaturnim modelom koji dobro opisuje odvijanje bioprocesa

    Modelling the effect of different substrates and temperature on the growth and lactic acid production by Lactobacillus amylovorus DSM 20531T in batch process

    Get PDF
    Amylolytic lactic acid bacterium Lactobacillus amylovorus DSM 20531T utilised glucose, sucrose and starch as a sole carbon and energy source. The three substrates were completely depleted from MRS medium during batch cultivations carried out in a laboratory scale stirred tank bioreactor at constant temperature (40 °C) and pH value (5.5). Under the tested conditions, the bacterium was capable of conducting simultaneously starch hydrolysis and fermentation. A mixture of two stereoisomers, D-(–)- and L-(+)-lactic acid, was produced in all cases by highly efficient homofermentative bioprocess with 0.93 to 1 g of lactate produced per g of total (consumed) substrate. The effect of temperature on the kinetics of cell growth and lactic acid production by the amylolytic strain in the starch-containing medium was also investigated. Efficient simultaneous saccharification and fermentation (SSF) were obtained at 35, 40 and 45 °C with completely degraded complex carbohydrate in 8 to 12 h and the product yield coefficient in the range from 0.91 to 0.93 g/g. Maximum values for substrate consumption rate (0.89 h–1), maximum specific growth rate (0.87 h–1), product formation rate (2.01 h–1), and productivity of lactic acid (1.45 g/(L·h)) were obtained at 45 °C, while maximum biomass concentration (4.38 g/L) was attained at 40 °C. The ratio of the two stereoisomeric forms of produced lactic acid was strongly affected by the temperature. Unstructured kinetic model was used to describe the consumption of the three substrates, bacterial biomass formation and lactic acid production by L. amylovorus DSM 20531T. The dependence of biokinetic parameters on temperature was described by cardinal temperature model. The applied models successfully predicted all experimental data

    Dominant microflora of fermented horse meat sausages

    Get PDF
    Budući da se proizvodi od konjskog mesa, u našoj zemlji, proizvode u malim domaćinstvima na tradicionalan način, a konačan pro- izvod ovisi o prisutnosti i aktivnosti prirodne mikroore, svrha ovog rada bila je odrediti mikrobnu populaciju i kemijske parametre u fermentiranim kobasicama od konjskog mesa, te izolirati i karakterizirati prisutne autohtone starter kulture i istražiti njihovu spo- sobnost inhibicije rasta patogenih bakterija. U uzorku kobasice od konjskog mesa biokemijskim API testovima dokazane su bakterija Serratia odorifera iz obitelji Enterobacteriaceae, Staphylococcus aureus, bakterija Listeria grayi, bakterije iz roda Salmonella i sul- toreducirajuće klostridije nisu utvrđene, a dokazan je i kvasac – Candida zeylanoides. Dominantna mikroflora u uzorku kobasice bio je izolat bakterija mliječne kiseline Lactococcus lactis ssp. lactis 5K1 u broju 8,301 log10cfu g-1. Na MRS podlozi (selektivnoj podlozi za bakterije mliječne kiseline) L. lactis ssp. lactis 5K1 proizveo je 13,83gL-1 mliječne kiseline (HPLC), te zakiselio podlogu na 4,16 pH vrijednost i pokazao znatno antimikrobno djelovanje prema patogenim test mikroorganizmima. U radu su praćeni i kemijski para- metri: udio vode (41,12%), masti (20,93%), proteina (27,29%), natrijevog klorida (3,78%), pH (4,94) i sadržaj nitrita (0,983 mgkg-1).Since the products of horse meat in our country, produced in small households in the traditional way, and the nal product depends on the presence and activity of natural microora, the purpose of this study was to determine the microbial population and chemical parameters in dry fermented sausages of horse meat, and isolate and characterize the presence of autochthonous starter cultures and to investigate their ability to inhibit growth of pathogenic bacteria. In the samples of horse meat sausages were detected bacteria Seratia odorifera from the family Enterobacteriaceae, Staphylococcus aureus, API Listeria test conrmed the bacteria L. grayi, bacteria of the genus Salmonella and Sulphite reducing clostridia not established, and detected yeast - Candida zeylanoides. The dominant microora in the samples of sausages were lactic acid bacteria Lactococcus lactis ssp. lactis 5K1 in the number log10cfu 8.301 g-1. On the MRS medium (selective medium for lactic acid) Lactococcus lactis ssp. lactis 5K1 produced 13,83gL-1 of lactic acid (HPLC) and acidify media at pH value of 4.16 and showed significant antimicrobial activity against pathogenic test microorganisms. In the paper were also observed chemical parameters: water content (41,12%), fat (20,93%), protein (27,29%), sodium chloride (3,78%), pH (4,94) and nitrite content (0,983 mgkg-1)

    Proizvodnja D- i L-mliječne kiseline s pomoću čiste i združene kulture bakterija iz roda Lactobacillus sp.

    Get PDF
    Batch cultivation of monoculture of Lactobacillus sp. and two–strain mixed culture of Lactobacillus sp. and Lactobacillus amylovorus DSM 20531T was carried out with the aim of producing L-(+)- and D-(–)/L-(+)-lactic acid to be implemented in poly(lactic acid) polymer production. Metabolic capacity of two Lactobacillus strains to ferment different carbon sources (glucose, sucrose or soluble starch) during cultivation in MRS medium at 40 °C, in a laboratory-scale stirred tank bioreactor was defined. Lactobacillus sp. showed similar affinity towards mono- and disaccharide substrates, which were homofermentatively converted mostly to L-(+)-lactic acid. L. amylovorus DSM 20531T has been characterized as a D/L-lactate producer and it is capable of conducting simultaneous saccharification and fermentation. Due to the interaction of Lactobacillus sp. with L. amylovorus DSM 20531T, starch was hydrolysed and fermented to the mixture of L-(+)- and D-(–)-lactic acid. Modified Luedeking-Piret kinetics used for the description of substrate utilization, growth of mono- and mixed cultures and production of lactic acid stereoisomers showed good agreement with experimental data.Proveden je šaržni uzgoj čiste kulture Lactobacillus sp. i združene kulture bakterija Lactobacillus sp. i Lactobacillus amylovorus DSM 20531T radi proizvodnje L-(+)- i D-(-)/L-(+)-mliječne kiseline i njihove primjene u proizvodnji polilaktida. Definirana je metabolička aktivnost dvaju sojeva iz roda Lactobacillus koji mogu fermentirati različite izvore ugljika (glukozu, saharozu ili topljivi škrob) tijekom uzgoja u MRS podlozi pri 40 °C u laboratorijskom bioreaktoru s miješalom. Bakterija Lactobacillus sp. sličnom brzinom homofermentativno konvertira monosaharide i disaharide do L-(+)-mliječne kiseline (od 89 do 93 %). Bakterija L. amylovorus DSM 20531T okarakterizirana je kao proizvođač D/L-mliječne kiseline i može provoditi simultanu saharifikaciju i fermentaciju. S pomoću združene kulture Lactobacillus sp. i L. amylovorus DSM 20531T škrob je hidroliziran i fermentiran do L-(+)- i D-(-)-mliječne kiseline. Potrošnja supstrata, rast čiste i združene kulture te proizvodnja stereoizomera mliječne kiseline opisani su prilagođenom Luedeking-Piret kinetikom, a dobiveni su rezultati u skladu s eksperimentalnim podacima

    Implementation of Ultrasound in Inovative Highly-efficient Bioprocesses

    Get PDF
    Primjena ultrazvuka jedna je od metoda čija primjena se istražuje u cilju unaprijeđenja učinkovitosti različitih postupaka, npr. filtracije, otplinjavanja, zagrijavanja i ekstruzije, pasterizacije i sterilizacije, smanjenja stupnja polimerizacije, itd., koji se provode u industrijskom mjerilu. Primjena ultrazvuka integrira se u različite inovativne i održive bioprocese tijekom kojih je znatno smanjena: (1) potrošnja vode, drugih otapala i energije, (2) potrošnja fosilnih goriva, (3) količina otpadne vode i (4) drugih tzv. opasnih proizvoda. Ovi bi integrirani (bio)procesi mogli naći primjenu u prehrambenoj, faramaceutskoj i kemijskoj industriji.Ultrasound is one of widely investigated methods to be applied in highly-efficient processes, e.g. filtration, deggasing, heating and extrusion, pasterization and sterilization, depolymerization, etc., usually performed on the industrial scale. Application of ultrasound has been integrated in different innovative and sustainable bioprocesses in which: (1) consumption of water, other solvents and energy, (2) consumption of fossil fuels, (3) volume of waste water as well as (4) other hazardous materials has been reduced. Those integrated (bio)processes could be implemented in food, pharmaceutical and chemical industry

    Photoheterotrophic cultivation of purple non-sulphur bacterium Rhodovulum adriaticum on the media with different carbon sources

    Get PDF
    Ljubičaste nesumporne bakterije zanimljive su s ekološkog i ekonomskog stajališta u održivim biotehnološkim procesima proizvodnje biogoriva, biokemikalija, biopolimera, biomase odnosno sintezi specifičnih spojeva kao što su npr. karotenoidi i pigmenti. Za uspostavu ekološki i ekonomski održivih bioprocesa nužan je adekavatan odabir radnih mikroorganizama, sirovina i uvjeta kultivacije, a dobar primjer za to je razvoj bioprocesa na obnovljivim sirovinama kao što su to lignocelulozne sirovine. U ovom istraživanju proučavan je fotoheterotrofni uzgoj ljubičaste nesumporne bakterije Rhodovulum adriaticum DSM 2781 na tekućim hranjivim podlogama koje sadrže glukozu i/ili ksilozu kao izvore ugljika s ciljem dobivanja bakterijske biomase i fotosintetskih pigmenata. Rezultati istraživanja pokazuju da su najveće vrijednosti pokazatelja uspješnosti bioprocesa (YX = 2,095 g L-1; YX/S = 0,54 g g-1i Pr = 0,022 g L-1h-1) vezanih u dobivanje biomase ostvareni kod uzgoja na hranjivoj podlozi s 5 g L-1 glukoze. Uzgoj R. adriaticum DSM 2781 na hranjivoj podlozi s 3 g L-1 glukoze i ksiloze pokazao se najuspješnji za dobivanje fotosintetskih pigmenata (ukupni pigmenti 13,27 mg g-1 biomase) uz zadovoljavajuće ostale pokazatelje uspješnosti bioprocesa (YX = 1,507 g L-1; YX/S = 0,22 g g-1i Pr = 0,017 g L-1h-1).Purple non-sulphur bacteria are interesting from ecologic and economic point of view in sustainable biotechnological production of biofuels, biochemicals, biopolymers and biomass as well as specific compounds such as carotenoids and pigments. In order to establish ecological and economic sustainable bioprocesses it is necessary to select adequate working microorganisms, raw materials and cultivation conditions. Development of bioprocesses on the renewable raw materials (e.g. lignocellulose containing feedstocks) are good example for such bioprocess types. In this research, the photoheterotrophic cultivation of purple non-sulfur bacteria Rhodovulum adriaticum DSM 2781 was studied on the liquid media containing glucose or /and xylose as a carbon sources in order to produce bacterial biomass and photosynthetic pigments. Results obtained in this study show that the highest values of bioprocess efficiency parameters (YX = 2,095 g L-1; YX/S = 0,54 g g-1i Pr = 0,022 g L-1h-1) related to the biomass production were observed during bacterial cultivation on media with 5 g L-1. Cultivation of R. adriaticum DSM 2781 on the media with 3 g L-1 glucose and xylose shows the highest total photosynthetic pigments content (13,27 mg g-1 biomass) together with satisfy other bioprocess efficiency parameters (YX = 1,507 g L-1; YX/S = 0,22 g g-1i Pr = 0,017 g L-1h-1)

    Anaerobni uzgoj kvasca Saccharomyces cerevisiae na hidrolizatima lignoceluloznih sirovina

    Get PDF
    Zbog velike rasprostranjenosti u prirodi i relativno niske cijene, lignocelulozne sirovine postaju zanimljive za primjenu u različitim biotehnološkim procesima. Međutim, zbog svoje kompleksne strukture, te sirovine moraju proći postupak predobradbe u kojem uglavnom nastaju nuspodukti koji imaju inhibitorno djelovanje na proizvodni mikroorganizam i time utječu na ukupnu učinkovitost bioprocesa. U ovom istraživanju ispitivana je mogućnost korištenja hidrolizata pšenične slame i kukuruzovine za anaerobni uzgoj kvasca S. cerevisiae odnosno s ciljem proizvodnje etanola. Postupak blago kisele predobrade lignoceluloznih sirovina u visokotlačnom reaktoru (pri 210°C; 20 bara; vrijeme zadržavanja 1 - 10 minuta; do 1,0 % H2SO4) korišten je za dobivanje hidrolizata lignoceluloznih sirovima pri čemu je najveći udjel ukupnih fermentabilnih šećera zabilježen kod postupka predobrade s 1,0 % H2SO4 i vremenom zadržavanja od 5 minuta. Anaerobni uzgoj kvasca na hranjivim podlogama s hidrolizatima lignoceluloznih sirovina proveden je u Erlenmeyer tikvicama, te dodatno testiran u horizontalnom rotirajućem cijevnom bioreaktoru (HRCB). Rezultati ovog istraživanja pokazuju da su veće vrijednosti pokazatelja uspješnosti anaerobnog uzgoja kvasca zabilježene na hranjivoj podlozi s hidrolizatom pšenične slame (u odnosu na hidrolizat kukuruzovine) u HRCB-u pri čemu su ostvarene ove vrijednosti pokazatelja uspješnosti bioprocesa: YP/S = 0,261 g g-1, Pr = 0,0678 g L-1h-1 i E= 42 %. Na osnovi rezultata ovog istraživanja vidljivo je da je potrebno dodatno optimizirati postupak predobrade lignoceluloznih sirovina kao i selekcionirati novi soj mikroorganizma koji ima sposobnost korištenja heksoza i pentoza odnosno visoku tolerantnost na nusprodukte koji nastaju postupkom predobrade lignoceluloznih sirovina

    Lignocellulosic byproducts from agriculture and the food industry as a driver of biotechnological production progress

    Get PDF
    Značajne količine raznovrsnih ostataka (odnosno lignocelulozne biomase) nastaju u poljoprivredi, prehrambenoj industriji i šumarstvu. Stoga je važno podići svijest o mogućnostima primjene takvih materijala koji se u današnje vrijeme ne bi trebali tretirati kao otpad, već se mogu koristiti kao obnovljive biotehnološke sirovine za proizvodnju kemikalija, drugih visokovrijednih proizvoda i biogoriva. Lignocelulozni materijal uglavnom sadrži celulozu, hemicelulozu i lignin. Predmet interesa ovog rada je lignocelulozni otpad iz poljoprivrede i prehrambene industrije kao mogući sirovinski temelj za napredak održive biotehnološke proizvodnje u Republici Hrvatskoj. Razmotrene su dostupne količine ovih lignoceluloznih sirovina, tipovi bioprocesa u kojima se one mogu koristiti, postupci predobrade koje je neophodno provesti prije provedbe samog bioprocesa te vrste biotehnoloških proizvoda koje je moguće dobiti.Significant amounts of various residues (i.e. lignocellulosic biomass) are generated in agriculture, food industry and forestry. Therefore, it is important to raise awareness about the possibilities of using such materials, which nowadays should not be treated as waste, but can be used as renewable biotechnological raw materials for the production of chemicals, other high-value products and biofuels. Lignocellulosic material consists mainly of cellulose, hemicellulose and lignin. The subject of interest of this paper is lignocellulosic waste from agriculture and the food industry as a possible raw material basis for the progress of sustainable biotechnological production in the Republic of Croatia. The available amounts of these lignocellulosic raw materials, the types of bioprocesses in which they can be used, the pretreatment procedures that need to be carried out before the implementation of the bioprocess itself, and the types of biotechnological products that can be obtained have been considered
    corecore