10 research outputs found

    Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein

    Get PDF
    © 2018 The Author(s). Wheat (Triticum aestivum) quality is mainly determined by grain storage protein compositions. Sulphur availability is essential for the biosynthesis of the main wheat storage proteins. In this study, the impact of different sulphur fertilizer r egimes on a range of agronomically important traits and associated gene networks was studied. High-performance liquid chromatography was used to analyse the protein compositions of grains grown under four different sulphur treatments. Results revealed that sulphur supplementation had a significant effect on grain yield, harvest index, and storage protein compositions. Consequently, two comparative sulphur fertilizer treatments (0 and 30 kg ha -1 sulphur, with 50 kg ha -1 nitrogen) at seven days post-anthesis were selected for a transcriptomics analysis to screen for differentially expressed genes (DEGs) involved in the regulation of sulphur metabolic pathways. The International Wheat Genome Sequencing Consortium chromosome survey sequence was used as reference. Higher sulphur supply led to one up-regulated DEG and sixty-three down-regulated DEGs. Gene ontology enrichment showed that four down-regulated DEGs were significantly enriched in nitrogen metabolic pathway related annotation, three of which were annotated as glutamine synthetase. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment identified three significantly enriched pathways involved in nitrogen and amino acid metabolism

    Grain quality in breeding

    No full text
    Grain characteristics (hardness, protein content/quality, starch properties, enzymatic activity, etc.) play an important role in the definition of end use quality for wheat-based products. Among them, gluten strength and extensibility, mostly determined by glutenin and gliadin composition, are two of the main factors that determine gluten quality. The complex inheritance of most quality traits has led to the development of indirect tests used in breeding for early and advanced generation selection. The main focus of breeders is adding resistance to biotic stress (fungi, insects, nematodes, etc.) and increasing grain yield while selection for quality often occurs in later generations. This often results in the propagation of poor quality lines that must be later discarded. Evaluation of quality in early generations requires suitable tests, preferably non-destructive. Increasing knowledge of the genes involved in quality will facilitate more precise and effective selection. Recent advances in wheat genome sequencing and the extensive genotyping of mapping populations has led to a precise molecular characterization of high molecular weight (HMW) and low molecular weight (LMW) glutenins, as well as the discovery of genes associated with quality traits like grain hardness, starch composition (e.g., waxy genes), etc. Massive genomic data will impact in breeding programs allowing quality fine tuning by precise selection of glutenins, starch, hardness and other traits, for specific end uses through marker assisted selection, genomic selection, etc. This chapter will describe different methods used for quality selection in breeding programs and research, and some examples of integration of local breeding programs with the extremely diverse end-uses of wheat based on a series of case-studies. Current and potential approaches to quality evaluation in durum wheat, wild relatives and synthetic wheat breeding programs will be also presented
    corecore