18 research outputs found

    Effects of Proteins from Culture Medium on Surface Property of Silanes- Functionalized Magnetic Nanoparticles

    Get PDF
    Monodisperse magnetic nanoparticles (MNPs) were synthesized by thermal decomposition of iron-oleate and functionalized with silanes bearing various functional groups such as amino group (NH2), short-chain poly(ethylene glycol) (PEG), and carboxylic group (COOH). Then, silanes-functionalized magnetic nanoparticles (silanes-MNPs) were incubated in cell culture medium plus fetal calf serum to investigate the effects of proteins from culture medium on surface property of MNPs. Zeta potential measurements showed that although surface charges of silanes-MNPs were different, they exhibited negative charges at neutral pH and approximate isoelectric points after they were incubated in cell culture medium. The reason was that silanes-MNPs could easily adsorb proteins from culture medium via non-covalent binding, resulting in the formation of protein-silanes-MNPs conjugates. Moreover, silanes-MNPs with various functional groups had different adsorption capacity to proteins, as confirmed by Coomassie blue fast staining method. The in vitro cell experiments showed that protein-silanes-MNPs had higher cellular uptake by cancer cells than silanes-MNPs

    Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

    No full text
    Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins--micelles that transport lipids and other hydrophobic substances in the blood--and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging
    corecore