5 research outputs found

    Environmental surveillance for Salmonella Typhi in rivers and wastewater from an informal sewage network in Blantyre, Malawi

    Get PDF
    Funding: Funding: This work was supported by the Bill and Melinda Gates Foundation (grant number INV002381) awarded to NCG.Environmental surveillance for Salmonella Typhi may provide information on the community-level dynamics of typhoid fever in resource poor regions experiencing high disease burden. Many knowledge gaps concerning the feasibility of ES remain, especially in areas lacking formal sewage systems. We implemented protocols for S. Typhi ES, including site selection and catchment population estimation, sample concentration and testing using qPCR for S. Typhi specific gene targets. Between May 2021 and May 2022, we collected grab samples and Moore swabs from 43 sites in Blantyre, Malawi. Catchment characteristics, water quality, and human faecal contamination (qPCR for Bacteroides HF183) were also recorded. Their association with S. Typhi detection was investigated using a logistic mixed-effects regression analysis. Prevalence of S. Typhi in ES samples was 2.1% (1.1–4.0%) and 3.9% (1.9–7.9%) for grab and Moore swab samples, respectively. HF183 was associated S. Typhi positivity, with a unit increase in log genome copies/microlitre increasing the odds of detection of S. Typhi by 1.56 (95% CI: 1.29–1.89) and 1.33 (1.10–1.61) in Moore swabs and grab samples, respectively. The location and timing of S. Typhi detection through ES was not associated with the incidence of typhoid fever reported in associated catchment populations. During this period of relatively low typhoid fever incidence, wastewater surveillance continued to detect S. Typhi in human sewage and wastewater suggesting that ES using natural river systems can be a sensitive indicator of transmission.Peer reviewe

    Environmental surveillance for Salmonella Typhi and its association with typhoid fever incidence in India and Malawi

    Get PDF
    Background Environmental surveillance (ES) for Salmonella Typhi potentially offers a low-cost tool to identify communities with a high burden of typhoid fever. Methods We developed standardised protocols for typhoid ES, including sampling site selection, validation, characterisation; grab or trap sample collection, concentration; and quantitative PCR targeting Salmonella genes (ttr, staG and tviB) and a marker of human faecal contamination (HF183). ES was implemented over 12-months in a historically high typhoid fever incidence setting (Vellore, India) and a lower incidence setting (Blantyre, Malawi) during 2021-2022. Results S. Typhi prevalence in ES samples was higher in Vellore compared with Blantyre; 39/520 (7.5%, 95% Confidence Interval 4.4-12.4%) vs. 11/533 (2.1%, 1.1-4.0%) in grab and 79/517 (15.3%, 9.8-23.0%) vs. 23/594 (3.9%, 1.9-7.9%) in trap samples. Detection was clustered by ES site and correlated with site catchment population in Vellore but not Blantyre. Incidence of culture-confirmed typhoid in local hospitals was low during the study and zero some months in Vellore despite S. Typhi detection in ES. Conclusions ES describes the prevalence and distribution of S. Typhi even in the absence of typhoid cases and could inform vaccine introduction. Expanded implementation and comparison with clinical and serological surveillance will further establish its public health utility

    Environmental surveillance for Salmonella Typhi as a tool to estimate the incidence of typhoid fever in low-income populations.

    Get PDF
    Background: The World Health Organisation recommends prioritised use of recently prequalified typhoid conjugate vaccines in countries with the highest incidence of typhoid fever. However, representative typhoid surveillance data are lacking in many low-income countries because of the costs and challenges of diagnostic clinical microbiology. Environmental surveillance (ES) of Salmonella Typhi in sewage and wastewater using molecular methods may offer a low-cost alternative, but its performance in comparison with clinical surveillance has not been assessed. Methods: We developed a harmonised protocol for typhoid ES and its implementation in communities in India and Malawi where it will be compared with findings from hospital-based surveillance for typhoid fever. The protocol includes methods for ES site selection based on geospatial analysis, grab and trap sample collection at sewage and wastewater sites, and laboratory methods for sample processing, concentration and quantitative polymerase chain reaction (PCR) to detect Salmonella Typhi. The optimal locations for ES sites based on digital elevation models and mapping of sewage and river networks are described for each community and their suitability confirmed through field investigation. We will compare the prevalence and abundance of Salmonella Typhi in ES samples collected each month over a 12-month period to the incidence of blood culture confirmed typhoid cases recorded at referral hospitals serving the study areas. Conclusions: If environmental detection of Salmonella Typhi correlates with the incidence of typhoid fever estimated through clinical surveillance, typhoid ES may be a powerful and low-cost tool to estimate the local burden of typhoid fever and support the introduction of typhoid conjugate vaccines. Typhoid ES could also allow the impact of vaccination to be assessed and rapidly identify circulation of drug resistant strains
    corecore