63 research outputs found
207Pb and 17O NMR Study of the Electron Density Distribution in Metal Phase of BaPb_{1-x}Bi_xO_3
The 17O and 207Pb NMR spectra were measured in ceramic samples in the
metallic phase of BaPb_{1-x}Bi_{x}O_3 oxides (0<x< 0.33). The inhomogeneous
magnetic broadening which appears due to a distribution of the Knight shifts
was analyzed in detail. It is shown that Bi atoms, which are randomly
incorporated in BaPbO_3 parent compound give rise to an increased conduction
electron spin density within an area which is delimited by its two first cation
shells. According to NMR data the percolative overlap of these areas occurs in
superconducting compositions and it is accompanied by a sharp growth of the
average Knight shift . The decrease of with temperature revealed for
x=0.33 evidences for an opening of the energy gap near E_F near the
metal-semiconductor transition (x=0.35).Comment: submitted to Phys. Rev.
The charge ordered state in half-doped Bi-based manganites studied by O and Bi NMR
We present a Bi and O NMR study of the Mn electron spin
correlations developed in the charge ordered state of
BiSrMnO and BiCaMnO. The unusually
large local magnetic field indicates the dominant
character of the lone electron pair of Bi-ions in both compounds. The
mechanism connecting the character of the lone pairs to the high
temperature of charge ordering is still not clarified. The observed
difference in for BiSrMnO to
BiCaMnO is probably due to a decrease in the canting of
the staggered magnetic moments of Mn-ions from. The modification of the
O spectra below demonstrates that the line due to the apical
oxygens is a unique local tool to study the development of the Mn spin
correlations. In the AF state the analysis of the O spectrum of
PrCaMnO and BiSrMnO prompts us to
try two different theoretical descriptions of the charge-ordered state, a
site-centered model for the first manganite and a bond-centered model for the
second one.Comment: 10 pages, 7 figure
Charge and Orbital Ordering in Pr_{0.5} Ca_{0.5} MnO_3 Studied by ^{17}O NMR
The charge and orbital ordering in Pr_{0.5} Ca_{0.5} MnO_3 is studied for the
first time by ^{17}O NMR. This local probe is sensitive to spin, charge and
orbital correlations. Two transitions exist in this system: the charge and
orbital ordering at T_{CO} = 225 K and the antiferromagnetic (AF) transition at
T_N = 170 K. Both are clearly seen in the NMR spectra measured in a magnetic
field of 7T. Above T_{CO} there exists only one NMR line with a large isotropic
shift, whose temperature dependence is in accordance with the presence of
ferromagnetic (FM) correlations. This line splits into two parts below T_{CO},
which are attributed to different types of oxygen in the charge/orbital ordered
state. The interplay of FM and AF spin correlations of Mn ions in the charge
ordered state of Pr_{0.5} Ca_{0.5} MnO_3 is considered in terms of the hole
hopping motion that is slowed down with decreasing temperature. The developing
fine structure of the spectra evidences, that there still exist
charge-disordered regions at T_{CO} > T > T_N and that the static (t >
10^{-6}s) orbital order is established only on approaching T_N. The CE-type
magnetic correlations develop gradually below T_{CO}, so that at first the AF
correlations between checkerboard ab-layers appear, and only at lower
temperature - CE correlations within the ab-planes
Diamagnetism above Tc in underdoped Bi2.2Sr1.8Ca2Cu3O10+d
Single crystals of (Bi2223) with were grown by a traveling solvent floating
zone method in order to investigate the superconducting properties of highly
underdoped Bi2223.Grown crystals were characterized by X-ray diffraction, DC
susceptibility and resistivity measurements, confirming Bi2223 to be the main
phase.The crystals were annealed under various oxygen partial pressures to
adjust their carrier densities from optimally doped to highly underdoped.The
fluctuation diamagnetic component above the superconducting transition
temperature extracted from the anisotropic normal state
susceptibilities () and ()
was found to increase with underdoping, suggesting a decrease in the
superconducting dimensionality and/or increase in the fluctuating vortex liquid
region.Comment: 6 pages, 7 figures, corrected fig.4 and references, published in J.
Phys. Soc. Jpn. 79, 114711 (2010
Isotopic disorder in Ge single crystals probed with 73Ge NMR
NMR spectra of 73Ge (nuclear spin I=9/2) in germanium single crystals with different isotopic compositions have been measured at the frequency of 17.4 MHz at room temperature. Due to the small concentration (∼0.1%) of the magnetic (73Ge) isotope, the magnetic dipole-dipole interaction is negligible in the samples studied, and the observed specific features of the resonance line shapes (a narrow central peak and a wide plateau) are determined mainly by the quadrupole interaction of magnetic nuclei with the random electric-field gradient (EFG) induced by the isotopic disorder. The second and fourth moments of the distribution function of the EFG are calculated taking into account local lattice deformations due to mass defects in the close neighborhood of the magnetic nuclei, as well as charge-density redistributions and lattice strains induced by distant impurity isotopes. The simulated line shapes, represented by a superposition of Gaussians corresponding to individual transitions between nuclear Zeeman sublevels, agree reasonably well with the measured spectra
Doping Dependence of Anisotropic Resistivities in Trilayered Superconductor Bi2Sr2Ca2Cu3O10+delta (Bi-2223)
The doping dependence of the themopower, in-plane resistivity rho_ab(T),
out-of-plane resistivity rho_c(T), and susceptibility has been systematically
measured for high-quality single crystal Bi2Sr2Ca2Cu3O10+delta. We found that
the transition temperature Tc and pseudogap formation temperature T_rho_c*,
below which rho_c shows a typical upturn, do not change from their optimum
values in the "overdoped" region, even though doping actually proceeds. This
suggests that, in overdoped region, the bulk is determined by the always
underdoped inner plane, which have a large superconducting gap, while the
carriers are mostly doped in the outer planes, which have a large phase
stiffness.Comment: 5 pages, 4 figures. to be published in PR
73Ge NMR spectra in germanium single crystals with different isotopic composition
We have studied the influence of isotopic disorder on the local deformations in Ge single crystals from both experimental and calculation points of view. The nuclear magnetic resonance (NMR) spectra of 73Ge nuclei (the nuclear spin equals 9/2) in perfect single crystals of germanium with different isotopic content were measured at temperatures 80, 300 and 450 K. Abnormal broadening of the spectrum was found to occur when the magnetic field was aligned along the [111] axis of a crystal. The observed specific angular dependence of the quadrupole broadening was attributed to isotopic disorder among atoms of germanium sited around the 73Ge NMR probe. Local lattice deformations in germanium crystal lattice due to isotopic impurity atoms were calculated in the framework of the adiabatic bond charge model. The results obtained were applied to study random noncubic crystal field interactions with the nuclear quadrupole moments and corresponding effects in NMR spectra. Simulated second and fourth moments of resonance frequency distributions caused by the magnetic dipole-dipole and electric quadrupole interactions are used to analyze the lineshapes, theoretical predictions agree qualitatively with the experimental data. © Springer-Verlag 1999
Melting of the orbital order in LaMnO3 probed by NMR
The Mn spin correlations were studied near the O′-O phase transition at TJT=750 K up to 950 K with 17O and 139La NMR in a stoichiometric LaMnO3 crystalline sample. The measured local hyperfine fields originate from the electron density transferred from the eg and t2g orbitals to the 2s(O) and 6s(La) orbits, respectively. By probing the oxygen nuclei, we show that the correlations of the Mn spins are ferromagnetic in the ab plane and robust up to TJT, whereas along the c axis they are antiferromagnetic and start to melt below TJT, at about 550 K. Above TJT, the ferromagnetic Mn-Mn exchange interaction is found isotropic. The room-temperature orbital mixing angle, φNMR= 109±1.5â̂̃, of the eg ground state is close to the reported value which was deduced from structural data on Jahn-Teller distorted MnO6 octahedra. For T>TJT, LaMnO3 can be described in terms of nonpolarized eg orbitals since both eg orbitals are equally occupied. © 2013 American Physical Society
- …