CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Melting of the orbital order in LaMnO3 probed by NMR
Authors
Anikeenok O.
Eremin M.
+6 more
Gerashenko A.
Mikhalev K.
Pinsard-Gaudart L.
Trokiner A.
Verkhovskii S.
Volkova Z.
Publication date
1 January 2013
Publisher
Abstract
The Mn spin correlations were studied near the O′-O phase transition at TJT=750 K up to 950 K with 17O and 139La NMR in a stoichiometric LaMnO3 crystalline sample. The measured local hyperfine fields originate from the electron density transferred from the eg and t2g orbitals to the 2s(O) and 6s(La) orbits, respectively. By probing the oxygen nuclei, we show that the correlations of the Mn spins are ferromagnetic in the ab plane and robust up to TJT, whereas along the c axis they are antiferromagnetic and start to melt below TJT, at about 550 K. Above TJT, the ferromagnetic Mn-Mn exchange interaction is found isotropic. The room-temperature orbital mixing angle, φNMR= 109±1.5â̂̃, of the eg ground state is close to the reported value which was deduced from structural data on Jahn-Teller distorted MnO6 octahedra. For T>TJT, LaMnO3 can be described in terms of nonpolarized eg orbitals since both eg orbitals are equally occupied. © 2013 American Physical Society
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/102666
Last time updated on 07/05/2019
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/138981
Last time updated on 07/05/2019