43 research outputs found

    Whole-genome sequencing of veterinary pathogens

    Get PDF

    Draft Genome Sequence of a Sequence Type 398 Methicillin-Resistant Staphylococcus aureus Isolate from a Danish Dairy Cow with Mastitis

    Get PDF
    ABSTRACT Livestock-associated (LA) methicillin-resistant Staphylococcus aureus (MRSA) strains of sequence type 398 (ST398) colonize both humans and various livestock species. In 2016, an ST398 LA-MRSA isolate (Sa52) was collected from a Danish dairy cow with mastitis, and here, we report the draft genome sequence of strain Sa52. </jats:p

    Draft Genome Sequences of Two Avian Pathogenic<i> Escherichia coli </i>Strains of Clinical Importance, E44 and E51

    Get PDF
    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their potential for use in autogenous vaccines for broiler breeders

    Genome analysis of Staphylococcus aureus ST291, a double locus variant of ST398, reveals a distinct genetic lineage

    Get PDF
    Staphylococcus aureus ST291 has been reported as a homologue recombinant double locus variant of the livestock associated S. aureus ST398. However, whole genome sequencing show that ST291 is a unique genetic lineage with highly variable content within its accessory genome compared to both human and livestock associated genome sequenced CC398s

    Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production

    Get PDF
    BACKGROUND: Escherichia coli infections known as colibacillosis constitute a considerable challenge to poultry farmers worldwide, in terms of decreased animal welfare and production economy. Colibacillosis is caused by avian pathogenic E. coli (APEC). APEC strains are extraintestinal pathogenic E. coli and have in general been characterized as being a genetically diverse population. In the Nordic countries, poultry farmers depend on import of Swedish broiler breeders which are part of a breeding pyramid. During 2014 to 2016, an increased occurrence of colibacillosis on Nordic broiler chicken farms was reported. The aim of this study was to investigate the genetic diversity among E. coli isolates collected on poultry farms with colibacillosis issues, using whole genome sequencing. METHODS: Hundred and fourteen bacterial isolates from both broilers and broiler breeders were whole genome sequenced. The majority of isolates were collected from poultry with colibacillosis on Nordic farms. Subsequently, comparative genomic analyses were carried out. This included in silico typing (sero- and multi-locus sequence typing), identification of virulence and resistance genes and phylogenetic analyses based on single nucleotide polymorphisms. RESULTS: In general, the characterized poultry isolates constituted a genetically diverse population. However, the phylogenetic analyses revealed a major clade of 47 closely related ST117 O78:H4 isolates. The isolates in this clade were collected from broiler chickens and breeders with colibacillosis in multiple Nordic countries. They clustered together with a human ST117 isolate and all carried virulence genes that previously have been associated with human uropathogenic E. coli. CONCLUSIONS: The investigation revealed a lineage of ST117 O78:H4 isolates collected in different Nordic countries from diseased broilers and breeders. The data indicate that the closely related ST117 O78:H4 strains have been transferred vertically through the broiler breeding pyramid into distantly located farms across the Nordic countries. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3415-6) contains supplementary material, which is available to authorized users
    corecore