12 research outputs found
MHC-II-independent CD4+ T cells induce colitis in immunodeficient RAG-/- hosts.
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential
MHC-II-independent CD4+ T cells induce colitis in immunodeficient RAG-/- hosts.
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential
CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver
Contains fulltext :
118089.pdf (publisher's version ) (Open Access)CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal), N-acetylgalactosamine (GalNAc), and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f-/-) mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5) but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes) infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3 approximately 4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (alpha-GalCer) in a calcium-dependent manner and participates in the presentation of alpha-GalCer to natural killer T (NKT) cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells
Major histocompatibility complex class I-restricted alloreactive CD4(+) T cells
Although it is well established that CD4(+) T cells generally recognize major histocompatibility complex (MHC) class II molecules, MHC class I-reactive CD4(+) T cells have occasionally been reported. Here we describe the isolation and characterization of six MHC class I-reactive CD4(+) T-cell lines, obtained by co-culture of CD4(+) peripheral blood T cells with the MHC class II-negative, transporter associated with antigen processing (TAP)-negative cell line, T2, transfected with human leucocyte antigen (HLA)-B27. Responses were inhibited by the MHC class I-specific monoclonal antibody (mAb), W6/32, demonstrating the direct recognition of MHC class I molecules. In four cases, the restriction element was positively identified as HLA-A2, as responses by these clones were completely inhibited by MA2.1, an HLA-A2-specific mAb. Interestingly, three of the CD4(+) T-cell lines only responded to cells expressing HLA-B27, irrespective of their restricting allele, implicating HLA-B27 as a possible source of peptides presented by the stimulatory MHC class I alleles. In addition, these CD4(+) MHC class I alloreactive T-cell lines could recognize TAP-deficient cells and therefore may have particular clinical relevance to situations where the expression of TAP molecules is decreased, such as viral infection and transformation of cells
HCV immunology--death and the maiden T cell.
Cellular immune responses play an important role in the control of hepatitis C virus (HCV), although in the majority of cases they ultimately fail. We examine the mechanisms by which virus-specific T cells may interact with a cell that is infected with HCV and how this interaction may explain the success and failure of the immune response. As an infected cell presenting foreign antigen, the hepatocyte will interact with a large number of lymphocytes, both by direct cell to cell contact and by indirect means through the secretion of cytokines and chemokines. These interactions may lead on the one hand to the death of infected hepatocytes or suppression of viral replication and on the other hand to the death of T lymphocytes or down regulation of their function. We suggest that activation of lymphocytes in lymphoid organs leads to generation of effector T cells (positive loop), while at the same time presentation of antigen in the liver either on hepatocytes or other specialised antigen presenting cells depresses these responses (negative loop). This model helps to explain both the specific phenotype and low frequencies of HCV specific CTL in chronic infection, through early elimination of cells before expansion and maturation can occur. The outcome of HCV infection is likely to result from the early balance between these two simultaneous loops
New concepts in the immunopathogenesis of chronic hepatitis B: the importance of the innate immune response
Acute and chronic infection with hepatitis B virus (HBV) is associated with an increased risk of developing liver disease including cirrhosis, decompensated liver disease, and hepatocellular carcinoma. The clinical presentation and natural history of HBV infection is mediated through complex interactions between the virus and the host immune response. HBV is not directly cytopathic to heptocytes; however, the interaction between the virus and the host immune response plays a central role in the pathogenesis of necroinflammation and liver fibrosis. Emerging data from immunopathogenesis studies in animal models and in vitro studies of liver biopsies from patients with chronic hepatitis B demonstrate a potentially important interaction between hepatitis B e antigen, HBV, and components of the innate immune response including Toll-like receptors, Kupffer cells, natural killer T-cells, and dendritic cells. These findings suggest that the innate immune response has an important role in influencing the outcome of acute and chronic HBV infection. The current knowledge regarding the interaction between HBV and components of the innate immune response during acute and chronic HBV infection is reviewed