25 research outputs found

    Collective surface diffusion near a first-order phase transition

    Full text link
    For a large class of lattice models we study the thermodynamic factor, Φ\Phi, of the collective surface diffusion coefficient near a first-order phase transition between two phases at low temperatures. In a two-phase regime its dependence on the coverage, \te, is \Phi \approx \te/[(\te-\te_-)(\te_+ - \te)N], where NN is the number of adsorption sites and \te_\pm are the single-phase coverages at the transition. In the crossover between the two-phase and single-phase regimes \Phi(\te) is shown to have a more complex behavior. The results are applied to a simple 2D lattice model.Comment: 9 pages, 4 figure

    Thermal Properties of High-Performance Concrete Containing Fine-Ground Ceramics as a Partial Cement Replacement

    Get PDF
    Some types of industrial waste can be used in concrete as a partial replacement of a cement binder. One such material is fine-ground ceramics, which is a waste produced during brick cutting. The ground ceramic can be used as a pozzolana active material which can improve final properties of concrete. This fine powder was used in this study as a partial replacement of the cement binder up to 60 mass% and its thermal and mechanical properties were studied using the differential scanning calorimetry, thermogravimetry, and thermodilatometry. It was shown that the differential scanning calorimetry is a suitable method for observing thermal changes in concrete samples containing such additives at the microstructural level. In particular, it allows one to investigate the hydration and pozzolanic reaction in the studied concrete. The investigation was performed in the temperature range from 25 °C to 1000 °C.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7160</p

    Effects of the Heat Treatment in the Properties of Fibrous Aerogel Thermal Insulation

    No full text
    Nowadays, besides the use of conventional insulations (plastic foams and wool materials), aerogels are one of the most promising thermal insulation materials. As one of the lightest solid materials available today, aerogels are manufactured through the combination of a polymer with a solvent, forming a gel. For buildings, the fiber-reinforced types are mainly used. In this paper, the changes both in the thermal performance and the material structure of the aerogel blanket are followed after thermal annealing. The samples are put under isothermal heat treatments at 70 &#176;C for weeks, as well as at higher temperatures (up to 210 &#176;C) for one day. The changes in the sorption properties that result from the annealing are presented. Furthermore, the changes in the thermal conductivity are followed by a Holometrix Lambda heat flow meter. The changes in the structure and surface of the material due to the heat treatment are investigated by X-ray diffraction and with scanning electron microscopy. Besides, the above-mentioned measurement results of differential scanning calorimetry experiments are also presented. As a result of using equipment from different laboratories that support each other, we found that the samples go through structural changes after undergoing thermal annealing. We manifested that the aerogel granules separate down from the glass fibers and grow up. This phenomenon might be responsible for the change in the thermal conductivity of the samples

    Preparation of fine powdered composite for latent heat storage

    No full text
    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise1752121st International Meeting on Thermophysic

    The Apparatus for Thermomechanical Analysis of Clay-based Ceramics

    No full text
    A dynamic thermomechanical analysis (D-TMA) apparatus is described for measuring the resonant frequency of the flexural vibration and the internal damping of the sample using the impulse excitation technique (IET). Since the measurement is conducted at temperatures up to 1250 °C, an electromagnetic impulser is used for excitation. The free vibrations are registered by an electret microphone, stored and then converted into a frequency spectrum using the fast Fourier transform, from which the resonant frequency can be found. The furnace is built from refractory porous alumina bricks and alumina fiber pads. The heating elements are four SiC rods connected to a temperature controller. The temperature is measured with a Pt-PtRh10 thermocouple in close proximity to the sample

    Influence of fly ash added to a ceramic body on its thermophysical properties

    No full text
    We study thermal expansion, mass changes, heat capacity, and thermal diffusivity and conductivity for a ceramic body with 20 mass% and without fly ash content, using the TDA, TG, DTA, DSC, and flash method. The measurements were performed (a) for green samples either isothermally or by a linear heating up to a temperature 600°C, 1050°C, or 1100°C, depending on the measurement method; (b) at the room temperature for samples preheated at 100°C, 200°C, ..., 1100°C. In case (a) addition of fly ash changes the final contraction only above ~900°C, while the thermal properties remain almost unchanged. In case (b) the final contraction of samples at 1100°C is the same. The thermal diffusivity is nearly identical up to 700°C, and fly ash causes the diffusivity to stay almost constant up to 1000°C

    The Sonic Resonance Method and the Impulse Excitation Technique: A Comparison Study

    No full text
    In this study, resonant frequencies of flexurally vibrating samples were measured using the sonic resonant method (SRM) and the impulse excitation technique (IET) to assess the equivalency of these two methods. Samples were made from different materials and with two shapes (prism with rectangular cross-section and cylinder with circular cross-section). The mean values and standard deviations of the resonant frequencies were compared using the t-test and the F-test. The tests showed an equivalency of both methods in measuring resonant frequency. The differences between the values measured using SRM and IET were not significant. Graphically, the relationship between the resonant frequencies is a line with a slope of 0.9993 ≈ 1
    corecore