22 research outputs found

    Systematic Lab Knowledge Integration for Management of Lipid Excess in High-Risk Patients : Rationale and Design of the SKIM LEAN Project

    Get PDF
    SKIM LEAN aims at exploiting Electronic Health Records (EHRs) to integrate knowledge derived from routine laboratory tests with background analysis of clinical databases, for the identification and early referral to specialist care, where appropriate, of patients with hypercholesterolemia, who may be inadequately controlled according to their cardiovascular (CV) risk level. SKIM LEAN addresses gaps in care that may occur through the lack of coordination between primary and specialist care, incomplete adherence to clinical guidelines, or poor patient's compliance to the physician's prescriptions because of comorbidities or drug side effects. Key project objectives include: (1) improved health professionals' competence and patient empowerment through a two-tiered educational website for general practitioners (GPs) and patients, and (2) implementation of a hospital-community shared care pathway to increase the proportion of patients at high/very-high CV risk (Familial Hypercholesterolemia, previous CV events) who achieve target LDL cholesterol (LDL-C) levels. Thanks to a close collaboration between clinical and information technology partners, SKIM LEAN will fully exploit the value of big data deriving from EHRs, and filter such knowledge using clinically-derived algorithms to risk-stratify patients. Alerts for GPs will be generated with interpreted test results. GPs will be able to refer patients with uncontrolled LDL-C within the shared pathway to the lipid or secondary prevention outpatient clinics of NIG hospital. Metrics to verify the project achievements include web-site visits, the number of alerts generated, numbers of patients referred by GPs, the proportion of secondary prevention patients who achieve LDL-C 50% decrease from baseline

    A portable system for autoregulation and wireless control of sensorized left ventricular assist devices

    No full text
    End stage heart failure patients could benefit from left ventricular assist device (LVAD) implantation as bridge to heart transplantation or as destination therapy. However, LVAD suffers from several limitations, including the presence of a battery as power supply, the need for cabled connection from inside to outside the patient, and the lack of autonomous adaptation to the patient metabolic demand during daily activity. The authors, in this wide scenario, aim to contribute to advancement of the LVAD therapy by developing the hardware and the firmware of a portable autoregulation unit (ARU), able to fulfill the needs of sensorized VAD in terms of physic/physiological data storing, continuous monitoring, wireless control from the external environment and automatic adaptation to patient activities trough the implementation of autoregulation algorithms. Moreover, in order to answer the rules and safety requirements for implantable biomedical devices, a user control interface (UCI), was developed and associated to the ARU for an external manual safe control. The ARU and UCI functionalities and autoregulation algorithms have been successfully tested on bench and on animal, with a response time of 1 s for activating autoregulation algorithms. Animal experiments showed as the presence of the ARU do not affect the animal cardiovascular system, giving a proof of concept of its applicability in vivo

    A dynamic control algorithm based on physiological parameters and wearable interfaces for adaptive ventricular assist devices

    No full text
    In this work we present an innovative algorithm for the dynamic control of ventricular assist devices (VADs), based on the acquisition of continuous physiological and functional parameters such as heart rate, blood oxygenation, temperature, and patient movements. Such parameters are acquired by wearable devices (MagIC & Winpack) and sensors implanted close to the VAD. The aim of the proposed algorithm is to dynamically control the hydraulic power of the VAD as a function of the detected parameters, patient's activity and emotional status. In this way, the cardiac dynamics regulated by the proposed autoregulation control algorithm for sensorized VADs, thus providing new therapy approaches for heart failure

    A wearable sensor for measuring sweat rate

    No full text
    Wearable sensors present a new frontier in the development of monitoring techniques. They are of great importance in sectors such as sport and healthcare as they enable physiological signals and biological fluids, such as human sweat, to be continuously monitored. Until recently this could only be carried out in specialized laboratories using cumbersome and often expensive devices. Sweat monitoring sensors integrated onto textile substrates are not only innovative but they also represent the first attempt to use such an idea in a system that will be worn directly on the body. This study outlines the development of a wearable sweat-rate sensor integrated onto a textile

    Computer simulation of coronary flow waveforms during caval occlusion

    No full text
    corecore