18 research outputs found

    Chronic Nicotine Cell Specifically Upregulates Functional α4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path

    Get PDF
    Understanding effects of chronic nicotine requires identifying the neurons and synapses whose responses to nicotine itself, and to endogenous acetylcholine, are altered by continued exposure to the drug. To address this problem, we developed mice whose α4 nicotinic receptor subunits are replaced by normally functioning fluorescently tagged subunits, providing quantitative studies of receptor regulation at micrometer resolution. Chronic nicotine increased α4 fluorescence in several regions; among these, midbrain and hippocampus were assessed functionally. Although the midbrain dopaminergic system dominates reward pathways, chronic nicotine does not change α4* receptor levels in dopaminergic neurons of ventral tegmental area (VTA) or substantia nigra pars compacta. Instead, upregulated, functional α4* receptors localize to the GABAergic neurons of the VTA and substantia nigra pars reticulata. In consequence, GABAergic neurons from chronically nicotine-treated mice have a higher basal firing rate and respond more strongly to nicotine; because of the resulting increased inhibition, dopaminergic neurons have lower basal firing and decreased response to nicotine. In hippocampus, chronic exposure to nicotine also increases α4* fluorescence on glutamatergic axons of the medial perforant path. In hippocampal slices from chronically treated animals, acute exposure to nicotine during tetanic stimuli enhances induction of long-term potentiation in the medial perforant path, showing that the upregulated α4* receptors in this pathway are also functional. The pattern of cell-specific upregulation of functional α4* receptors therefore provides a possible explanation for two effects of chronic nicotine: sensitization of synaptic transmission in forebrain and tolerance of dopaminergic neuron firing in midbrain

    Dopamine D_2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive 4 nicotinic receptors via a cholinergic-dependent mechanism

    Get PDF
    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D_2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering 4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D_2-receptor agonist. When challenged with the D_(2)R agonist, quinpirole (0.5–10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D_(2)R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    Chronic Nicotine Cell Specifically Upregulates Functional α4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path

    Get PDF
    Understanding effects of chronic nicotine requires identifying the neurons and synapses whose responses to nicotine itself, and to endogenous acetylcholine, are altered by continued exposure to the drug. To address this problem, we developed mice whose α4 nicotinic receptor subunits are replaced by normally functioning fluorescently tagged subunits, providing quantitative studies of receptor regulation at micrometer resolution. Chronic nicotine increased α4 fluorescence in several regions; among these, midbrain and hippocampus were assessed functionally. Although the midbrain dopaminergic system dominates reward pathways, chronic nicotine does not change α4* receptor levels in dopaminergic neurons of ventral tegmental area (VTA) or substantia nigra pars compacta. Instead, upregulated, functional α4* receptors localize to the GABAergic neurons of the VTA and substantia nigra pars reticulata. In consequence, GABAergic neurons from chronically nicotine-treated mice have a higher basal firing rate and respond more strongly to nicotine; because of the resulting increased inhibition, dopaminergic neurons have lower basal firing and decreased response to nicotine. In hippocampus, chronic exposure to nicotine also increases α4* fluorescence on glutamatergic axons of the medial perforant path. In hippocampal slices from chronically treated animals, acute exposure to nicotine during tetanic stimuli enhances induction of long-term potentiation in the medial perforant path, showing that the upregulated α4* receptors in this pathway are also functional. The pattern of cell-specific upregulation of functional α4* receptors therefore provides a possible explanation for two effects of chronic nicotine: sensitization of synaptic transmission in forebrain and tolerance of dopaminergic neuron firing in midbrain

    MOESM1 of Nuclear roles for cilia-associated proteins

    No full text
    Additional file 1. Additional material

    Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner

    No full text
    Tobacco addiction is a complex form of dependence process that leads high relapse rates in people seeking to stop smoking. Nicotine elicits its primary effects on neuronal nicotinic cholinergic receptors (nAChRs), alters brain reward systems, and induces long-term changes during chronic nicotine use and withdrawal. We analysed the effects of chronic nicotine treatment and withdrawal on the mesocorticolimbic pathway (a brain reward circuit in which addictive drugs induce widespread adaptations) by analysing the expression of nAChRs in the midbrain, striatum and prefrontal cortex (PFC) of mice receiving intravenous infusions of nicotine (4 mg/kg/h) or saline (control) for 14 days and mice sacrified two hours, and one, four and 14 days after treatment withdrawal. We biochemically fractionated whole tissue homogenates in order to obtain crude synaptosomal membranes. Western blotting analyses of these membrane fractions, ligand binding and immunoprecipitation studies, showed that chronic nicotine up-regulates heteromeric β2∗nAChRs in all three mesocorticolimbic areas, and that these receptors are rapidly removed from synapses upon the cessation of nicotine treatment. The extent of nicotine-induced nAChR up-regulation, and the time course of its reversal were comparable in all three areas. We also analysed the expression of glutamate receptor subunits (GluRs) and scaffold proteins, and found that it was altered in an area-specific manner during nicotine exposure and withdrawal. As the functional properties of GluRs are determined by their subunit composition, the observed changes in subunit expression may indicate alterations in the excitability of mesocorticolimbic circuitry, and this may underlie the long-term biochemical and behavioural effects of nicotine dependence

    Acetylcholine-Stimulated [3H]GABA Release from Mouse Brain Synaptosomes is Modulated by α4β2 and α4α5β2 Nicotinic Receptor Subtypes

    No full text
    Nicotinic acetylcholine receptor (nAChR) agonists stimulate the release of GABA from GABAergic nerve terminals, but the nAChR subtypes that mediate this effect have not been elucidated. The studies reported here used synaptosomes derived from the cortex, hippocampus, striatum, and thalamus of wild-type and α4-, α5-, α7-, β2-, and β4-null mutant mice to identify nAChR subtypes involved in acetylcholine (ACh)-evoked GABA release. Null mutation of genes encoding the α4 or β2 subunits resulted in complete loss of ACh-stimulated [3H]GABA release in all four brain regions. In contrast, α5 gene deletion exerted a small but significant decrease in maximal ACh-evoked [3H]GABA release in hippocampus and striatum, with a more profound effect in cortex. Acetylcholine-stimulated [3H]GABA release from thalamic synaptosomes was not significantly affected by α5 gene deletion. No effect was detected in the four brain regions examined in α7- or β4-null mutant mice. Further analysis of ACh-evoked [3H]GABA release revealed biphasic concentration-response relationships in the four brain regions examined from all wild-type animals and in α5 null mutant mice. Moreover, a selective reduction in the maximum response of the high-affinity component was apparent in α5-null mutant mice. The results demonstrate that α4β2-type nAChRs are critical for ACh-stimulated [3H]GABA release from all four brain regions examined. In addition, the results suggest that α5-containing receptors on GABAergic nerve terminals comprise a fraction of the high ACh-sensitivity component of the concentration-response curve and contribute directly to the ability of nicotinic agonists to evoke GABA release in these regions

    A Novel α-Conotoxin Mii-Sensitive Nicotinic Acetylcholine Receptor Modulates [ 3H]-Gaba Release In The Superficial Layers Of The Mouse Superior Colliculus

    No full text
    Mouse superficial superior colliculus (SuSC) contains dense GABAergic innervation and diverse nicotinic acetylcholine receptor subtypes. Pharmacological and genetic approaches were used to investigate the subunit compositions of nicotinic acetylcholine receptors (nAChR) expressed on mouse SuSC GABAergic terminals. [ 125I]-Epibatidine competition-binding studies revealed that the α3β2* and α6β2* nicotinic subtype-selective peptide α-conotoxin MII-blocked binding to 40 ± 5% of SuSC nAChRs. Acetylcholine-evoked [ 3H]-GABA release from SuSC crude synaptosomal preparations is calcium dependent, blocked by the voltage-sensitive calcium channel blocker, cadmium, and the nAChR antagonist mecamylamine, but is unaffected by muscarinic, glutamatergic, P2X and 5-HT3 receptor antagonists. Approximately 50% of nAChR-mediated SuSC [ 3H]-GABA release is inhibited by α-conotoxin MII. However, the highly α6β2*-subtype-selective α-conotoxin PIA did not affect [ 3H]-GABA release. Nicotinic subunit-null mutant mouse experiments revealed that ACh-stimulated SuSC [ 3H]-GABA release is entirely β2 subunit-dependent. α4 subunit deletion decreased total function by \u3e90%, and eliminated α-conotoxin MII-resistant release. ACh-stimulated SuSC [ 3H]-GABA release was unaffected by β3, α5 or α6 nicotinic subunit deletions. Together, these data suggest that a significant proportion of mouse SuSC nicotinic agonist-evoked GABA-release is mediated by a novel, α-conotoxin MII-sensitive α3α4β2 nAChR. The remaining α-conotoxin MII-resistant, nAChR agonist-evoked SuSC GABA release appears to be mediated via α4β2* subtype nAChRs. Novel α3α4β2 nicotinic subtype modulates superior colliculus GABA release.This study examined nicotinic acetylcholine receptor (nAChR) subtypes modulating GABA release in the superior colliculus, a region highly enriched in α-conotoxin MII-sensitive nAChRs. A novel functional α3α4β2 nAChR subtype was found to mediate superficial superior colliculus GABA release. This study confirms the expression of functional, non-α6β2-subtype, α-conotoxin MII-sensitive nAChRs in mammalian brain, and uncovers a new level of modulation of superior colliculus GABA release. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry

    Increased Nicotinic Acetylcholine Receptor Protein Underlies Chronic Nicotine-Induced Up-Regulation Of Nicotinic Agonist Binding Sites In Mouse Brain

    No full text
    Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [ 125I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [ 125I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [ 125I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [ 125I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [1 25I] epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein. Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics

    α4β2* Nicotinic Acetylcholine Receptors Modulate the Effects of Ethanol and Nicotine on the Acoustic Startle Response

    No full text
    Background: Ethanol modulates the functional activity of α4β2 neuronal nicotinic cholinergic receptors (nAChR) when measured in vitro, but the potential role of α4β2 nAChRs in regulating behavioral effects of ethanol is unknown. Recently, Tritto et al. (Tritto T, Stitzel JA, Marks MJ, Romm E, Collins AC (2002) Variability in response to nicotine in the LS×SS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes. Pharmacogenetics 12:197–208) reported that a polymorphism (A529T) in the α4 nAChR subunit gene is associated with variability in nicotine's effects on startle in the LS×SS recombinant inbred (RI) strains. Ethanol also alters the acoustic startle response. Thus, we evaluated the potential role of α4β2 nAChRs in modulating ethanol's effects on acoustic startle. Methods: The effects of ethanol on acoustic startle were determined in the LS×SS RI strains. In addition, the effects of ethanol and nicotine were also measured in α4 gain of function and β2 null mutant mice. The β2 mutants do not express the major variant of α4 nAChRs, α4β2. Results: An association between the α4 A529T polymorphism and ethanol's effects on startle was found in the LS×SS RI strains; those strains that express the A529 variant of α4 were more sensitive to ethanol‐induced depression of startle. The α4 gain of function mutants were more sensitive to the effects of both nicotine and ethanol and the β2 null mutants were less sensitive to both drugs. Conclusions: α4β2‐containing nAChRs may play important roles in modulating the effects of both ethanol and nicotine on the acoustic startle response. We suggest that nAChR subunit genes should be evaluated as potential contributors to both alcoholism and tobacco abuse
    corecore