1,907 research outputs found

    Tracing baryons in the warm-hot intergalactic medium with broad Ly alpha absorption

    Full text link
    We discuss physical properties and baryonic content of broad Ly alpha absorbers (BLAs) at low redshift. These absorption systems, recently discovered in high-resolution, high-signal to noise quasar absorption line spectra, possibly trace the warm-hot intergalactic medium (WHIM) in the temperature range between 10^5 and 10^6 K. To extend previous BLA measurements we have analyzed STIS data of the two quasars H 1821+643 and PG 0953+415 and have identified 13 BLA candidates along a total (unblocked) redshift path of dz=0.440. Combining our measurements with previous results for the lines of sight toward PG 1259+593 and PG 1116+215, the resulting new BLA sample consists of 20 reliably detected systems as well as 29 additional tentative cases, implying a BLA number density of dN/dz=22-53. We estimate that the contribution of BLAs to the baryon density at z=0 is Omega_b(BLA)>0.0027 h_70^-1 for absorbers with log (N/b)>11.3. This number indicates that WHIM broad Ly alpha absorbers contain a substantial fraction of the baryons in the local Universe. (Abridged abstract)Comment: 17 pages, 7 figures; Accepted for publication in A&

    The Risetime of Nearby Type Ia Supernovae

    Full text link
    We present calibrated photometric measurements of the earliest detections of nearby type Ia supernovae (SNe Ia). The set of ~30 new, unfiltered CCD observations delineate the early rise behavior of SNe Ia > 18 to 10 days before maximum. Using simple empirical models, we demonstrate the strong correlation between the risetime (i.e., the time between explosion and maximum), the post-rise light-curve shape, and the peak luminosity. Using a variety of light-curve shape methods, we find the risetime to B maximum for a SN Ia with Delta m15(B)=1.1 mag and peak M_V=-19.45 mag to be 19.5+/-0.2 days. We find that the peak brightness of SNe Ia is correlated with their risetime; SNe Ia which are 0.10 mag brighter at peak in the B-band require 0.80+/-0.05 days longer to reach maximum light. We determine the effects of several possible sources of systematic errors, but none of these significantly impacts the inferred risetime. Constraints on SN Ia progenitor systems and explosion models are derived from a comparison between the observed and theoretical predictions of the risetime.Comment: Submitted to the Astronomical Journal, 24 pages, 7 figure

    Detection of Ne VIII in the Low-Redshift Warm-Hot IGM

    Full text link
    High resolution FUSE and STIS observations of the bright QSO HE 0226-4110 (zem = 0.495) reveal the presence of a multi-phase absorption line system at zabs(O VI) = 0.20701 containing absorption from H I (Ly alpha to Ly theta), C III, O III, O IV, O VI, N III, Ne VIII, Si III, S VI and possibly S V. Single component fits to the Ne VIII and O VI absorption doublets yield logN(Ne VIII) = 13.89+/-0.11 and logN(O VI) = 14.37+/-0.03. The Ne VIII and O VI doublets are detected at 3.9 sigma and 16 sigma significance levels, respectively. This represents the first detection of intergalactic Ne VIII, a diagnostic of gas with temperature in the range from 5x10(5) to 1x10(6) K. The O VI and Ne VIII are not likely created in a low density medium photoionized solely by the extragalactic background at z = 0.2 since the required path length of ~11 Mpc implies the Hubble flow absorption line broadening would be ~10 times greater than the observed line widths. A collisional ionization origin is therefore more likely. Assuming [Ne/H] and [O/H] = -0.5, the value N(Ne VIII)/N(O VI) = 0.33+/-0.10 is consistent with gas in collisional ionization equilibrium near T=5.4x10(5) K with logN(H)= 19.9 and N(H)/N(H I) = 1.7x10(6). The observations support the basic idea that a substantial fraction of the baryonic matter at low redshift exists in hot very highly ionized gaseous structures.Comment: 32 pages text and 9 pages of figures. Accepted by the Astrophysical Journa

    Physical Properties and Baryonic Content of Low-Redshift Intergalactic Ly-alpha and O VI Absorption Systems: The PG1116+215 Sight Line

    Full text link
    We present HST and FUSE observations of the intergalactic absorption toward PG1116+215 in the 900-3000 A spectral region. We detect 25 Ly-alpha absorbers at rest-frame equivalent widths W_r > 30 mA, yielding (dN/dz)_Ly-alpha = 154+/-18 over an unblocked redshift path of 0.162. Two additional weak Ly-alpha absorbers with W_r ~ 15-20 mA are also present. Eight of the Ly-alpha absorbers have large line widths (b > 40 km/sec). The detection of narrow OVI in the broad Ly-alpha absorber at z=0.06244 supports the idea that the Ly-alpha profile is thermally broadened in gas with T > 10^5 K. We find dN/dz ~ 50 for broad Ly-alpha absorbers with W_r > 30 mA and b > 40 km/sec. If the broad Ly-alpha lines are dominated by thermal broadening in hot gas, the amount of baryonic material in these absorbers is enormous, perhaps as much as half the baryonic mass in the low-redshift universe. We detect OVI absorption in several of the Ly-alpha clouds along the sight line. Two detections at z=0.13847 and z=0.16548 are confirmed by the presence of other ions at these redshifts, while the detections at z=0.04125, 0.05895, 0.05928, and 0.06244 are based upon the Ly-alpha and OVI detections alone. The information available for 13 low-redshift OVI absorbers with W_r > 50 mA along 5 sight lines yields (dN/dz)_OVI ~ 14 and Omega_b(OVI) > 0.0027/h_75, assuming a metallicity of 0.1 solar and an OVI ionization fraction < 0.2. The properties and prevalence of low-redshift OVI absorbers suggest that they too may be a substantial baryon repository, perhaps containing as much mass as stars and gas inside galaxies. The redshifts of the OVI absorbers are highly correlated with the redshifts of galaxies along the sight line, though few of the absorbers lie closer than 600/h_75 kpc to any single galaxy. [abbreviated]Comment: 99 pages, 30 figures, aastex format, ApJS in pres

    Electrostatic Interactions to Attach Latex to Pigment Surface to Reduce Binder Migration

    Get PDF
    For many paints, paper coatings, and other pigmented coatings, latex and soluble binders are used to impart mechanical properties. However, non-uniform latex binder distributions are often observed in the thickness direction during application and drying, leading to quality issues. While several publications have documented this issue, few solutions are offered in the literature. Here we report a simple process to use electrostatic interactions to attach latex binder to pigments. Coating suspensions are generated using cationic precipitated calcium carbonate (PCC) pigments that are mixed with anionic styrene-butadiene (SB) latex binders resulting in latex-covered pigments. The migration of latex binder in coatings generated on various substrates under various drying conditions was measured using Raman spectroscopy and compared with reference coatings. The new system shows reduced latex binder migration for most situations than those obtained with the reference coating. The coated papers were also measured for strength, opacity, gloss, water drainage rate, and porosity. Little difference is seen in the picking strength of the coating and gloss compared to coatings prepared with standard formulations. Water drainage rate, opacity, and porosity were higher for latex-covered pigment (LCP) coatings than the reference standard coating; this increased porosity is likely due to the strong electrostatic attraction that exists between the cationic pigment and anionic latex binder that reduces the densification of the coating during drying

    Keys to Profitable Guar Production.

    Get PDF
    8 p

    Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110

    Full text link
    We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110 (z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11. The O VI systems unambiguously trace hot gas only in one case. For the 4 other O VI systems, photoionization and collisional ionization models are viable options to explain the observed column densities of the O VI and the other ions. If the O VI systems are mostly photoionized, only a fraction of the observed O VI will contribute to the baryonic density of the warm-hot ionized medium (WHIM) along this line of sight. Combining our results with previous ones, we show that there is a general increase of N(O VI) with increasing b(O VI). Cooling flow models can reproduce the N-b distribution but fail to reproduce the observed ionic ratios. A comparison of the number of O I, O II, O III, O IV, and O VI systems per unit redshift show that the low-z IGM is more highly ionized than weakly ionized. We confirm that photoionized O VI systems show a decreasing ionization parameter with increasing H I column density. O VI absorbers with collisional ionization/photoionization degeneracy follow this relation, possibly suggesting that they are principally photoionized. We find that the photoionized O VI systems in the low redshift IGM have a median abundance of 0.3 solar. We do not find additional Ne VIII systems other than the one found by Savage et al., although our sensitivity should have allowed the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6 K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line transitions.Comment: Accepted for publication in the ApJS. Full resolution figures available at http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd
    • …
    corecore