24 research outputs found

    Structure of the ovaries of the Nimba otter shrew, Micropotamogale lamottei, and the Madagascar hedgehog tenrec, Echinops telfairi

    Get PDF
    The otter shrews are members of the subfamily Potamogalinae within the family Tenrecidae. No description of the ovaries of any member of this subfamily has been published previously. The lesser hedgehog tenrec, Echinops telfairi, is a member of the subfamily Tenrecinae of the same family and, although its ovaries have not been described, other members of this subfamily have been shown to have ovaries with non-antral follicles. Examination of these two species illustrated that non-antral follicles were characteristic of the ovaries of both species, as was clefting and lobulation of the ovaries. Juvenile otter shrews range from those with only small follicles in the cortex to those with 300- to 400-mu m follicles similar to those seen in non-pregnant and pregnant adults. As in other species, most of the growth of the oocyte occurred when follicles had one to two layers of granulosa cells. When larger follicles became atretic in the Nimba otter shrew, hypertrophy of the theca interna produced nodules of glandular interstitial tissue. In the tenrec, the hypertrophying theca interna cells in most large follicles appeared to undergo degeneration. Both species had some follicular fluid in the intercellular spaces between the more peripheral granulosa cells. It is suggested that this fluid could aid in separation of the cumulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral follicles. Ovaries with a thin-absent tunica albuginea and follicles with small-absent antra are widespread within both the Eulipotyphla and in the Afrosoricida, suggesting that such features may represent a primitive condition in ovarian development. Lobulated and deeply crypted ovaries are found in both groups but are not as common in the Eulipotyphla making inclusion of this feature as primitive more speculative. Copyright (C) 2005 S. Karger AG, Basel

    FUV and X-ray absorption in the Warm-Hot Intergalactic Medium

    Get PDF
    The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in the X-ray band currently represent the best method to study the WHIM at low redshifts. We here describe the physical properties of the WHIM and the concepts behind WHIM absorption line measurements of H I and high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray band. We review results of recent WHIM absorption line studies carried out with UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss their implications for our knowledge of the WHIM.Comment: 26 pages, 9 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 3; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore