30 research outputs found

    Cluster Headache Genomewide Association Study and Meta-Analysis Identifies Eight Loci and Implicates Smoking as Causal Risk Factor

    Get PDF
    Objective: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. Methods: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. Results: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. Interpretation: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor

    Ensemble of rankers for efficient gene signature extraction in smoke exposure classification

    No full text
    Abstract Background System toxicology aims at understanding the mechanisms used by biological systems to respond to toxicants. Such understanding can be leveraged to assess the risk of chemicals, drugs, and consumer products in living organisms. In system toxicology, machine learning techniques and methodologies are applied to develop prediction models for classification of toxicant exposure of biological systems. Gene expression data (RNA/DNA microarray) are often used to develop such prediction models. Results The outcome of the present work is an experimental methodology to develop prediction models, based on robust gene signatures, for the classification of cigarette smoke exposure and cessation in humans. It is a result of the participation in the recent sbv IMPROVER SysTox Computational Challenge. By merging different gene selection techniques, we obtain robust gene signatures and we investigate prediction capabilities of different off-the-shelf machine learning techniques, such as artificial neural networks, linear models and support vector machines. We also predict six novel genes in our signature, and firmly believe these genes have to be further investigated as biomarkers for tobacco smoking exposure. Conclusions The proposed methodology provides gene signatures with top-ranked performances in the prediction of the investigated classification methods, as well as new discoveries in genetic signatures for bio-markers of the smoke exposure of humans
    corecore