123 research outputs found

    Relationship between earth-directed solar eruptions and magnetic clouds at 1AU: A brief review

    Full text link
    We review relationships between coronal mass ejections (CMEs), EIT post eruption arcades, and the coronal neutral line associated with global magnetic field and magnetic clouds near the Earth. Our previous findings indicate that the orientation of a halo CME elongation may correspond to the orientation of the underlyig flux rope. Here we revisit these preliminary reports by comparing orientation angles of elongated LASCO CMEs, both full and partial halos, to the post eruption arcades. Based on 100 analysed events, it was found that the overwhelming majority of halo CMEs are elongated in the direction of the axial field of the post eruptio arcades. Moreover, this conclusion also holds for partial halo CMEs as well as for events that originate further from the disk center. This suggests that the projection effect does not drastically change the appearance of full and partial halos and their imagesstill bear reliable information about the underlying magnetic fields. We also compared orientations of the erupted fields near the Sun and in the interplanetary space and found that the local tiltof the coronal neutral line at 2.5 solar radii is well correlated with the magnetic cloud axis measured near the Earth. We suggest that the heliospheric magnetic fields significantly affect the propagating ejecta. Sometimes, the ejecta may even rotate so that its axis locally aligns itself with the heliospheric current sheet.Comment: 12 pages; 8 figure

    Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    Get PDF
    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec-2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young et al. (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4-5 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s−1^{-1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.Comment: 21 pages (single column), 7 figures, Accepted for Publication in The Astrophysical Journa
    • …
    corecore