188 research outputs found

    Lattice Green's function for crystals containing a planar interface

    Full text link
    Flexible boundary condition methods couple an isolated defect to a harmonically responding medium through the bulk lattice Green's function; in the case of an interface, interfacial lattice Green's functions. We present a method to compute the lattice Green's function for a planar interface with arbitrary atomic interactions suited for the study of line defect/interface interactions. The interface is coupled to two different semi-infinite bulk regions, and the Green's function for interface-interface, bulk-interface and bulk-bulk interactions are computed individually. The elastic bicrystal Green's function and the bulk lattice Green's function give the interaction between bulk regions. We make use of partial Fourier transforms to treat in-plane periodicity. Direct inversion of the force constant matrix in the partial Fourier space provides the interface terms. The general method makes no assumptions about the atomic interactions or crystal orientations. We simulate a screw dislocation interacting with a (101ˉ2)(10\bar{1}2) twin boundary in Ti using flexible boundary conditions and compare with traditional fixed boundary conditions results. Flexible boundary conditions give the correct core structure with significantly less atoms required to relax by energy minimization. This highlights the applicability of flexible boundary conditions methods to modeling defect/interface interactions by \textit{ab initio} methods

    Cu/Ag EAM Potential Optimized for Heteroepitaxial Diffusion from ab initio Data

    Full text link
    A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(111), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM potential and first modify the Cu-Ag pair potential to match the FCC/HCP site energy difference then include Cu-Cu pair potential optimization for the entire database. The optimized EAM potential reproduce DFT monomer and dimer relative energies and geometries correctly. In trimer calculations, the potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are both lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that the optimized Cu-Ag EAM can be applied in the study of larger Cu islands on Ag(111).Comment: 15 pages, 7 figure

    Convergence rate for numerical computation of the lattice Green's function

    Full text link
    Flexible boundary condition methods couple an isolated defect to bulk through the bulk lattice Green's function. The inversion of the force-constant matrix for the lattice Green's function requires Fourier techniques to project out the singular subspace, corresponding to uniform displacements and forces for the infinite lattice. Three different techniques--relative displacement, elastic Green's function, and discontinuity correction--have different computational complexity for a specified numerical error. We calculate the convergence rates for elastically isotropic and anisotropic cases and compare them to analytic results. Our results confirm that the discontinuity correction is the most computationally efficient method to compute the lattice Green's function.Comment: 12 pages, 4 figure

    Thermal Stabilization of the HCP Phase in Titanium

    Full text link
    We have used a tight-binding model that is fit to first-principles electronic-structure calculations for titanium to calculate quasi-harmonic phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega crystal structures. We show that the true zero-temperature ground-state is the omega structure, although this has never been observed experimentally at normal pressure, and that it is the entropy from the thermal population of phonon states which stabilizes the hcp structure at room temperature. We present the first completely theoretical prediction of the temperature- and pressure-dependence of the hcp-omega phase transformation and show that it is in good agreement with experiment. The quasi-harmonic approximation fails to adequately treat the bcc phase because the zero-temperature phonons of this structure are not all stable

    Systematic pathway generation and sorting in martensitic transformations: Titanium alpha to omega

    Get PDF
    Structural phase transitions are governed by the underlying atomic transformation mechanism; martensitic transformations can be separated into strain and shuffle components. A systematic pathway generation and sorting algorithm is presented and applied to the problem of the titanium alpha to omega transformation under pressure. In this algorithm, all pathways are constructed within a few geometric limits, and efficiently sorted by their energy barriers. The geometry and symmetry details of the seven lowest energy barrier pathways are given. The lack of a single simple geometric criterion for determining the lowest energy pathway shows the necessity of atomistic studies for pathway determination.Comment: 11 pages, 2 figure

    A New Mechanism for the Alpha to Omega Martensitic Transformation in Pure Titanium

    Full text link
    We propose a new direct mechanism for the pressure driven alpha to omega martensitic transformation in pure titanium. A systematic algorithm enumerates all possible mechanisms whose energy barriers are evaluated. A new, homogeneous mechanism emerges with a barrier at least four times lower than other mechanisms. This mechanism remains favorable in a simple nucleation model.Comment: 4 pages, 4 figure
    • …
    corecore