27 research outputs found

    Investigating the Performance of Rural Off-Grid Photovoltaic System with Electric-Mobility Solutions: A Case Study Based on Kenya

    Get PDF
    Over the last years, stand-alone and / or hybrid photovoltaic systems have spread in rural areas, especially in Sub-Saharan Africa. Compared to conventional systems (typically diesel generators), these systems can provide a reliable electricity supply at reasonable costs with a low degree of greenhouse gas emissions. Therefore, this paper focuses on modelling and investigation of an off-grid photovoltaic system (charging station) performance based on a located in Kenya. However, the model can be adapted to any other region and any type of photovoltaic systems module by changing model input data such as solar radiation, air temperature, longitude, latitude, load profile and standard test conditions parameters of the photovoltaic systems module. The modelled photovoltaic system (charging station) will be used to provide reliable and clean electricity for a number of important tasks (e.g. water purification, charging special floatable lanterns and electric bikes)

    Effect of argon concentration on thermal efficiency of gas-filled insulating glass flat-plate collectors

    Get PDF
    open access articleInsulating glass flat-plate collectors can save cost by being produced quickly and automatically in insulated glass production facilities, and they can be filled with argon to reduce heat loss. During its lifetime, the collector is likely to lose argon because of gradual material degradation of the sealing. However, information on the influence of the argon concentration on the collector efficiency is limited. Therefore, the objective of this research work was to analyse this effect. A theoretical material property calculation of argon-air mixtures was carried out to determine the convective losses with variable argon concentrations. Thermal collector performance was measured experimentally using an outdoor solar tracker test rig. The results strongly suggest, that the influence of argon concentration on both the convective losses and the thermal efficiency is non-linear. The measurements revealed that an argon concentration of 90 % can increase average thermal performance by percentage points. An increase in argon concentration from 0 % to 50 % has almost twice the effect on average thermal efficiency as an increase from 50 % to 90 %. Concluding from these results, an argon leakage threshold of 2.5 percentage points per year is proposed to avoid disproportionate loss of efficiency over time

    Down-regulation of Fra a 1.02 in strawberry fruits causes transcriptomic and metabolic changes compatible with an altered defense response

    Get PDF
    The strawberry Fra a 1 proteins belong to the class 10 Pathogenesis-Related (PR-10) superfamily. In strawberry, a large number of members have been identified, but only a limited number is expressed in the fruits. In this organ, Fra a 1.01 and Fra a 1.02 are the most abundant Fra proteins in the green and red fruits, respectively, however, their function remains unknown. To know the function of Fra a 1.02 we have generated transgenic lines that silence this gene, and performed metabolomics, RNA-Seq, and hormonal assays. Previous studies associated Fra a 1.02 to strawberry fruit color, but the analysis of anthocyanins in the ripe fruits showed no diminution in their content in the silenced lines. Gene ontology (GO) analysis of the genes differentially expressed indicated that oxidation/reduction was the most represented biological process. Redox state was not apparently altered since no changes were found in ascorbic acid and glutathione (GSH) reduced/oxidized ratio, but GSH content was reduced in the silenced fruits. In addition, a number of glutathione-S-transferases (GST) were down-regulated as result of Fra a 1.02-silencing. Another highly represented GO category was transport which included a number of ABC and MATE transporters. Among the regulatory genes differentially expressed WRKY33.1 and WRKY33.2 were down-regulated, which had previously been assigned a role in strawberry plant defense. A reduced expression of the VQ23 gene and a diminished content of the hormones JA, SA, and IAA were also found. These data might indicate that Fra a 1.02 participates in the defense against pathogens in the ripe strawberry fruits

    New clues for understanding the magnetic behavior of Upt3

    No full text
    New clues for understanding the magnetic behavior of Upt3 / W. Trinkl ; S. Corsépius ; G. R. Stewart. - In: Journal of alloys and compounds. 240. 1996. S. 96-10

    Spin glass behaviour in doped and pure UPt3 - a possible key

    No full text
    Spin glass behaviour in doped and pure UPt3 - a possible key / W. Trinkl ... - In: Europhysics letters. 35. 1996. S. 207-21

    Electric Two-Wheeler Vehicle Integration into Rural Off-Grid Photovoltaic System in Kenya

    No full text
    In both rural and urban areas, two-wheeler vehicles are the most common means of transportation, contributing to local air pollution and greenhouse gas emissions (GHG). Transitioning to electric two-wheeler vehicles can help reduce GHG emissions while also increasing the socioeconomic status of people in rural Kenya. Renewable energy systems can play a significant role in charging electric two-wheeled vehicles, resulting in lower carbon emissions and increased renewable energy penetration in rural Kenya. As a result, using the Conventional and Renewable Energy Optimization (CARNOT) Toolbox in the MATLAB/Simulink environment, this paper focuses on integrating and modeling electric two-wheeled vehicles (e-bikes) into an off-grid photovoltaic Water-Energy Hub located in the Lake Victoria Region of Western Kenya. Electricity demand data obtained from the Water-Energy Hub was investigated and analyzed. Potential solar energy surplus was identified and the surplus was used to incorporate the electric two-wheeler vehicles. The energy consumption of the electric two-wheeler vehicles was also measured in the field based on the rider’s driving behavior. The modeling results revealed an annual power consumption of 27,267 kWh, a photovoltaic (PV) electricity production of 37,785 kWh, and an electricity deficit of 370 kWh. The annual results show that PV generation exceeds power consumption, implying that there should be no electricity deficit. The results, however, do not represent the results in hourly resolution, ignoring the impact of weather fluctuation on PV production. As a result, in order to comprehend the electricity deficit, hourly resolution results are shown. A load optimization method was designed to efficiently integrate the electric 2-wheeler vehicle into the Water-Energy Hub in order to alleviate the electricity deficit. The yearly electricity deficit was decreased to 1 kWh and the annual electricity consumption was raised by 11% (i.e., 30,767 kWh), which is enough to charge four more electric two-wheeler batteries daily using the load optimization technique
    corecore