158 research outputs found

    A Preliminary Theoretical Study of the Expansion Tube, a New Device for Producing High-Enthalpy Short-Duration Hypersonic Gas Flows

    Get PDF
    A preliminary theoretical study was conducted of a new technique for producing high-enthalpy gas flows. The device considered utilizes an unsteady expansion process for the purpose of total-enthalpy multiplication. Analyses were conducted for both perfect and real air in equilibrium, assuming idealized diaphragm bursts, centered expansion waves, and continuum flow. Results of the study showed the expansion tube capable of outperforming the conventional shock tunnel by a factor of approximately 2 in velocity for the same test-section ambient density and pressure. The degree of dissociation is low at all phases of the thermodynamic cycle in the expansion tube; thus the test-section air has a good possibility of being in equilibrium. Maximum pressures involved in the cycle for duplicating a typical reentry from, a lunar mission are low enough for existing pressure-vessel techniques. Both the known and anticipated advantages and disadvantages of this new concept are also discussed

    Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    Get PDF
    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions

    A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube

    Get PDF
    Perfect gas analysis of expansion shock tunnel with nozzle to stabilize expansio

    Combustion detector

    Get PDF
    A device has been developed for generating a rapid response signal upon the radiation-emitting combustion reaction of certain gases in order to provide a means for the detection and identification of such reaction and concurrently discriminate against spurious signals. This combustion might be the first stage of a coal mine explosion process, and thereby this device could provide a warning of the impending explosion in time to initiate quenching action. This device has the capability of distinguishing between the light emitted from a combustion reaction and the light emitted by miners' lamps, electric lamps, welding sparks or other spurious events so that the quenching mechanism is triggered only when an explosion-initiating combustion occurs

    Asteria

    Get PDF

    A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    Get PDF
    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author
    corecore