6 research outputs found

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the

    Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014–2018 national laboratory surveillance

    Get PDF
    Objectives: Carbapenem resistance mediated by mobile genetic elements has emerged worldwide and has become a major public health threat. To gain insight into the molecular epidemiology of carbapenem resistance in The Netherlands, Dutch medical microbiology laboratories are requested to submit suspected carbapenemase-producing Enterobacterales (CPE) to the National Institute for Public Health and the Environment as part of a national surveillance system. Methods: Meropenem MICs and species identification were confirmed by E-test and MALDI-TOF and carbapenemase production was assessed by the Carbapenem Inactivation Method. Of all submitted CPE, one species/carbapenemase gene combination per person per year was subjected to next-generation sequencing (NGS). Results: In total, 1838 unique isolates were received between 2014 and 2018, of which 892 were unique CPE isolates with NGS data available. The predominant CPE species were Klebsiella pneumoniae (n = 388, 43%), Escherichia coli (n = 264, 30%) and Enterobacter cloacae complex (n = 116, 13%). Various carbapenemase alleles of the same carbapenemase gene resulted in different susceptibilities to meropenem and this effect varied between species. Analyses of NGS data showed variation of prevalence of carbapenemase alleles over time with blaOXA-48 being predominant (38%, 336/892), followed by blaNDM-1 (16%, 145/892). For the first time in the Netherlands, blaOXA-181, blaOXA-232 and blaVIM-4 were detected. The genetic background of K. pneumoniae and E. coli isolates was highly diverse. Conclusions: The CPE population in the Netherlands is diverse, suggesting multiple introductions. The predominant carbapenemase alleles are blaOXA-48 and blaNDM-1. There was a clear association between species, carbapenemase allele and susceptibility to meropenem

    Non-invasively measured structural and functional arterial characteristics and coronary heart disease risk in middle aged and elderly men

    No full text
    Background: In cardiovascular (CV) epidemiology, interest increases in studying etiologic and prognostic implications of early structural or functional changes of the large arteries. Examples of such measurements are pulse wave velocity (PWV), carotid intima-media thickness (CIMT) and augmentation index (AIx). PWV and CIMT are established markers of CV risk whereas the role of AIx as indicator of risk has not fully been established. Therefore, our aim was to relate AIx to CV risk and to compare the magnitude of relations of PWV, CIMT and AIx to CV risk. Methods: Two hundred and ninty-nine men free from cardiovascular disease (mean age 59.2 years), participated in this cross-sectional study. Cardiovascular risk profile was determined and 10-year coronary heart disease risk was estimated using the Framingham risk score (FRS). PWV, CIMT and AIx were measured and data were analyzed using linear regression models. Results: PWV and CIMT were strongest related to FRS whereas AIx showed the weakest relation. Ten-year coronary heart disease risk increased 6.24%, 95% confidence interval (CI) [5.11;7.37] per standard deviation (S.D.) increase in PWV, 6.39% [5.24;7.54] per S.D. increase in CIMT and 2.50% [1.19;3.80] per S.D. increase in AIx. Conclusion: In middle aged and elderly men AIx is related to CV risk. However, compared with AIx, PWV and CIMT seem better markers of cardiovascular risk

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    textabstractAn important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data
    corecore