109 research outputs found

    El fenómeno meteórico y las clases de meteoritos.

    Get PDF

    Conèixer què cau del cel

    Get PDF

    The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids

    Full text link
    Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hyper-velocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The present size distribution of the asteroid belt suggests that an asteroid with 100 km radius is encountered 101410^{14} times during the lifetime of the Solar System by objects larger than 10 cm in radius; the formed craters cover the surface of the asteroid about 100 times. We present a Monte Carlo code that takes into account the statistical bombardment of individual infinitesimally small surface elements, the subsequent compaction of the underlying material, the formation of a crater and a regolith layer. For the entire asteroid, 10,000 individual surface elements are calculated. We compare the ejected material from the calculated craters with the shock stage of meteorites with low petrologic type and find that these most likely stem from smaller parent bodies that do not possess a significant regolith layer. For larger objects, which accrete a regolith layer, a prediction of the thickness depending on the largest visible crater can be made. Additionally, we compare the crater distribution of an object initially 100 km in radius with the shape model of the asteroid (21) Lutetia, assuming it to be initially formed spherical with a radius that is equal to its longest present ellipsoid length. Here, we find the shapes of both objects to show resemblance to each other.Comment: Accepted by Ap

    Accretion of water in carbonaceous chondrites: current evidence and implications for the delivery of water to early Earth

    Get PDF
    Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies. In this review, we describe significant evidence for the accretion of ices and hydrated minerals in the outer protoplanetary disk. In that distant region highly porous and fragile carbon and water-rich transitional asteroids formed, being the parent bodies of the carbonaceous chondrites (CCs). CCs are undifferentiated meteorites that never melted but experienced other physical processes including thermal and aqueous alteration. Recent evidence indicates that few of them have escaped significant alteration, retaining unique features that can be interpreted as evidence of wet accretion. Some examples of carbonaceous chondrite parent body aqueous alteration will be presented. Finally, atomistic interpretations of the first steps leading to water-mediated alteration during the accretion of CCs are provided and discussed. From these new insights into the water retained in CCs we can decipher the pathways of delivery of volatiles to the terrestrial planets.Comment: 37 pages, 2 Tables, 10 Figures Presented in the International ESAC workshop "Ices in the Solar System" To be published in Space Science Reviews (SPAC-D-18-00036R3

    Deep machine learning for meteor monitoring: advances with transfer learning and gradient-weighted class activation mapping

    Full text link
    In recent decades, the use of optical detection systems for meteor studies has increased dramatically, resulting in huge amounts of data being analyzed. Automated meteor detection tools are essential for studying the continuous meteoroid incoming flux, recovering fresh meteorites, and achieving a better understanding of our Solar System. Concerning meteor detection, distinguishing false positives between meteor and non-meteor images has traditionally been performed by hand, which is significantly time-consuming. To address this issue, we developed a fully automated pipeline that uses Convolutional Neural Networks (CNNs) to classify candidate meteor detections. Our new method is able to detect meteors even in images that contain static elements such as clouds, the Moon, and buildings. To accurately locate the meteor within each frame, we employ the Gradient-weighted Class Activation Mapping (Grad-CAM) technique. This method facilitates the identification of the region of interest by multiplying the activations from the last convolutional layer with the average of the gradients across the feature map of that layer. By combining these findings with the activation map derived from the first convolutional layer, we effectively pinpoint the most probable pixel location of the meteor. We trained and evaluated our model on a large dataset collected by the Spanish Meteor Network (SPMN) and achieved a precision of 98\%. Our new methodology presented here has the potential to reduce the workload of meteor scientists and station operators and improve the accuracy of meteor tracking and classification.Comment: Accepted in Planetary and Space Scienc
    corecore