15 research outputs found

    Realities of bridge resilience in Small Island Developing States

    Get PDF
    Small Island Developing States (SIDS) are acknowledged as particularly vulnerable to extreme climate events; however, the realities for transport infrastructure and bridges are still poorly studied. Assessing bridges in this context can be challenging due to data scarcity, a lack of local standards, and uncertainty due to climate change. While bridges are designed to connect transport networks, they also carry energy, water, and communication networks, making them critical cascading failure points worthy of special attention in terms of risk assessment and resilience measures. We explore what resilience actually means for the design and management of SIDS bridge infrastructure by applying a post disaster forensics and systems approach that is not reliant on complex methods or large amounts of data. To demonstrate the practicality of our approach, we apply it to the island of Dominica, which is regularly impacted by both tropical storms and hurricanes. Our results document the extreme conditions for infrastructure and nearby settlements and the complex interrelated physical processes that occur during these events. We reflect on the implications for design approaches for bridges under these conditions and detail specific recommendations on how the resilience of existing and new bridges can be enhanced through practical measures that are achievable, even within the constraints experienced by those managing bridge infrastructure in SIDS contexts. This work adds to the growing number of studies exploring forensic disaster investigation and systems thinking, but is the first to explore bridge resilience in SIDS

    The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination

    Get PDF
    BACKGROUND\ud \ud Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) METHODS: The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene.\ud \ud RESULTS\ud \ud The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy.\ud \ud CONCLUSION\ud \ud The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high

    Drug coverage in treatment of malaria and the consequences for resistance evolution - evidence from the use of sulphadoxine/pyrimethamine

    Get PDF
    BACKGROUND\ud \ud It is argued that, the efficacy of anti-malarials could be prolonged through policy-mediated reductions in drug pressure, but gathering evidence of the relationship between policy, treatment practice, drug pressure and the evolution of resistance in the field is challenging. Mathematical models indicate that drug coverage is the primary determinant of drug pressure and the driving force behind the evolution of drug resistance. These models show that where the basis of resistance is multigenic, the effects of selection can be moderated by high recombination rates, which disrupt the associations between co-selected resistance genes.\ud \ud METHODS\ud \ud To test these predictions, dhfr and dhps frequency changes were measured during 2000-2001 while SP was the second-line treatment and contrasted these with changes during 2001-2002 when SP was used for first-line therapy. Annual cross sectional community surveys carried out before, during and after the policy switch in 2001 were used to collect samples. Genetic analysis of SP resistance genes was carried out on 4,950 Plasmodium falciparum infections and the selection pressure under the two policies compared.\ud \ud RESULTS\ud \ud The influence of policy on the parasite reservoir was profound. The frequency of dhfr and dhps resistance alleles did not change significantly while SP was the recommended second-line treatment, but highly significant changes occurred during the subsequent year after the switch to first line SP. The frequency of the triple mutant dhfr (N51I,C59R,S108N) allele (conferring pyrimethamine resistance) increased by 37% - 63% and the frequency of the double A437G, K540E mutant dhps allele (conferring sulphadoxine resistance) increased 200%-300%. A strong association between these unlinked alleles also emerged, confirming that they are co-selected by SP.\ud \ud CONCLUSION\ud \ud The national policy change brought about a shift in treatment practice and the resulting increase in coverage had a substantial impact on drug pressure. The selection applied by first-line use is strong enough to overcome recombination pressure and create significant linkage disequilibrium between the unlinked genetic determinants of pyrimethamine and sulphadoxine resistance, showing that recombination is no barrier to the emergence of resistance to combination treatments when they are used as the first-line malaria therapy

    High Resistance of Plasmodium falciparum to Sulphadoxine/Pyrimethamine in Northern Tanzania and the Emergence of dhps Resistance Mutation at Codon 581

    Get PDF
    BACKGROUND: Sulphadoxine-pyrimethamine (SP) a widely used treatment for uncomplicated malaria and recommended for intermittent preventive treatment of malaria in pregnancy, is being investigated for intermittent preventive treatment of malaria in infants (IPTi). High levels of drug resistance to SP have been reported from north-eastern Tanzania associated with mutations in parasite genes. This study compared the in vivo efficacy of SP in symptomatic 6-59 month children with uncomplicated malaria and in asymptomatic 2-10 month old infants. METHODOLOGY AND PRINCIPAL FINDINGS: An open label single arm (SP) standard 28 day in vivo WHO antimalarial efficacy protocol was used in 6 to 59 months old symptomatic children and a modified protocol used in 2 to 10 months old asymptomatic infants. Enrolment was stopped early (87 in the symptomatic and 25 in the asymptomatic studies) due to the high failure rate. Molecular markers were examined for recrudescence, re-infection and markers of drug resistance and a review of literature of studies looking for the 581G dhps mutation was carried out. In symptomatic children PCR-corrected early treatment failure was 38.8% (95% CI 26.8-50.8) and total failures by day 28 were 82.2% (95% CI 72.5-92.0). There was no significant difference in treatment failures between asymptomatic and symptomatic children. 96% of samples carried parasites with mutations at codons 51, 59 and 108 in the dhfr gene and 63% carried a double mutation at codons 437 and 540. 55% carried a third mutation with the addition of a mutation at codon 581 in the dhps gene. This triple: triple haplotype maybe associated with earlier treatment failure. CONCLUSION: In northern Tanzania SP is a failed drug for treatment and its utility for prophylaxis is doubtful. The study found a new combination of parasite mutations that maybe associated with increased and earlier failure. TRIAL REGISTRATION: ClinicalTrials.gov NCT00361114

    A review of modelling methodologies for flood source area (FSA) identification

    Get PDF
    Flooding is an important global hazard that causes an average annual loss of over 40 billion USD and affects a population of over 250 million globally. The complex process of flooding depends on spatial and temporal factors such as weather patterns, topography, and geomorphology. In urban environments where the landscape is ever-changing, spatial factors such as ground cover, green spaces, and drainage systems have a significant impact. Understanding source areas that have a major impact on flooding is, therefore, crucial for strategic flood risk management (FRM). Although flood source area (FSA) identification is not a new concept, its application is only recently being applied in flood modelling research. Continuous improvements in the technology and methodology related to flood models have enabled this research to move beyond traditional methods, such that, in recent years, modelling projects have looked beyond affected areas and recognised the need to address flooding at its source, to study its influence on overall flood risk. These modelling approaches are emerging in the field of FRM and propose innovative methodologies for flood risk mitigation and design implementation; however, they are relatively under-examined. In this paper, we present a review of the modelling approaches currently used to identify FSAs, i.e. unit flood response (UFR) and adaptation-driven approaches (ADA). We highlight their potential for use in adaptive decision making and outline the key challenges for the adoption of such approaches in FRM practises
    corecore