6 research outputs found

    The global response: How cities and provinces around the globe tackled Covid-19 outbreaks in 2021

    Get PDF
    Background: Tackling the spread of COVID-19 remains a crucial part of ending the pandemic. Its highly contagious nature and constant evolution coupled with a relative lack of immunity make the virus difficult to control. For this, various strategies have been proposed and adopted including limiting contact, social isolation, vaccination, contact tracing, etc. However, given the heterogeneity in the enforcement of these strategies and constant fluctuations in the strictness levels of these strategies, it becomes challenging to assess the true impact of these strategies in controlling the spread of COVID-19.Methods: In the present study, we evaluated various transmission control measures that were imposed in 10 global urban cities and provinces in 2021 Bangkok, Gauteng, Ho Chi Minh City, Jakarta, London, Manila City, New Delhi, New York City, Singapore, and Tokyo.Findings: Based on our analysis, we herein propose the population-level Swiss cheese model for the failures and pit-falls in various strategies that each of these cities and provinces had. Furthermore, whilst all the evaluated cities and provinces took a different personalized approach to managing the pandemic, what remained common was dynamic enforcement and monitoring of breaches of each barrier of protection. The measures taken to reinforce the barriers were adjusted continuously based on the evolving epidemiological situation.Interpretation: How an individual city or province handled the pandemic profoundly affected and determined how the entire country handled the pandemic since the chain of transmission needs to be broken at the very grassroot level to achieve nationwide control

    Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam

    No full text
    Groundwater salinization is considered as a major environmental problem in worldwide coastal areas, influencing ecosystems and human health. However, an accurate prediction of salinity concentration in groundwater remains a challenge due to the complexity of groundwater salinization processes and its influencing factors. In this study, we evaluate state-of-the-art machine learning (ML) algorithms for predicting groundwater salinity and identify its influencing factors. We conducted a study for the coastal multi-layer aquifers of the Mekong River Delta (Vietnam), using a geodatabase of 216 groundwater samples and 14 conditioning factors. We compared the predictive performances of different ML techniques, i.e., the Random Forest Regression (RFR), the Extreme Gradient Boosting Regression (XGBR), the CatBoost Regression (CBR), and the Light Gradient Boosting Regression (LGBR) models. The model performance was assessed by using root-mean-square error (RMSE), coefficient of determination (R2), the Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The results show that the CBR model has the highest performance with both training (R2 = 0.999, RMSE = 29.90) and testing datasets (R2 = 0.84, RMSE = 205.96, AIC = 720.60, and BIC = 751.04). Ten of the 14 influencing factors, including the distance to saline sources, the depth of screen well, the groundwater level, the vertical hydraulic conductivity, the operation time, the well density, the extraction capacity, the thickness of the aquitard, the distance to fault, and the horizontal hydraulic conductivity are the most important factors for groundwater salinity prediction. The results provide insights for policymakers in proposing remediation and management strategies for groundwater salinity issues in the context of excessive groundwater exploitation in coastal lowland regions. Since the human-induced influencing factors have significantly influenced groundwater salinization, urgent actions should be taken into consideration to ensure sustainable groundwater management in the coastal areas of the Mekong River Delta
    corecore