56 research outputs found

    Charge transport mechanism in networks of armchair graphene nanoribbons

    No full text

    Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons

    Get PDF
    Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to 700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical bandgap of 1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (gigantic binding energy and ultrafast exciton formation etc.), but also highlight promising properties of GNRs for optoelectronic devices.Comment: 26 pages, 4 figures, 5 pages Supplementary Informatio

    Small-Angle Excess Scattering: Glassy Freezing or Local Orientational Ordering?

    Full text link
    We present Monte Carlo simulations of a dense polymer melt which shows glass-transition-like slowing-down upon cooling, as well as a build up of nematic order. At small wave vectors q this model system shows excess scattering similar to that recently reported for light-scattering experiments on some polymeric and molecular glass-forming liquids. For our model system we can provide clear evidence that this excess scattering is due to the onset of short-range nematic order and not directly related to the glass transition.Comment: 3 Pages of Latex + 4 Figure

    Interface localisation-delocalisation transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study

    Full text link
    Using extensive Monte Carlo simulations we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e, the left wall attracts the A-component of the mixture with the same strength as the right wall the B-component, and give rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localisation/delocalisation transition and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite size scaling techniques we locate these critical points and present evidence of 2D Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis ϕ=1/2\phi=1/2 of the phase diagram and for D2RgD \approx 2 R_g we encounter a tricritical point. For even smaller film thickness the interface localisation/delocalisation transition is second order and we find a single critical point at ϕ=1/2\phi=1/2. Measuring the probability distribution of the interface position we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence for a renormalization of the interface potential by capillary waves in the framework of a microscopic model.Comment: Phys.Rev.

    Path integral for half-binding potentials as quantum mechanical analog for black hole partition functions

    Full text link
    The semi-classical approximation to black hole partition functions is not well-defined, because the classical action is unbounded and the first variation of the uncorrected action does not vanish for all variations preserving the boundary conditions. Both problems can be solved by adding a Hamilton-Jacobi counterterm. I show that the same problem and solution arises in quantum mechanics for half-binding potentials.Comment: 6 pages, proceedings contribution to "Path integrals - New Trends and Perspectives", Dresden, September 200

    5-Lipoxygenase Metabolic Contributions to NSAID-Induced Organ Toxicity

    Full text link

    Hysteresis in graphene nanoribbon field-effect devices

    No full text
    corecore