5 research outputs found

    Competitive Pseudopericyclic [3,3]- and [3,5]-Sigmatropic Rearrangements of Trichloroacetimidates

    No full text
    The Woodward–Hoffmann rules predict whether concerted pericyclic reactions are allowed or forbidden based on the number of electrons involved and whether the cyclic orbital overlap involves suprafacial or antarafacial orbital overlap. Pseudopericyclic reactions constitute a third class of reactions in which orthogonal orbitals make them orbital symmetry allowed, regardless of the number of electrons involved in the reaction. Based on the recent report of eight-centered ester rearrangements, it is predicted that the isoelectronic eight-centered rearrangements of imidates would also be allowed. We now report that these rearrangements occur, and indeed, an eight-centered rearrangement is slightly favored in at least one case over the well-known six-centered Overman rearrangements, in a trichloroacetimidoylcyclohexadienone, a molecular system where both rearrangements are possible

    Competitive Pseudopericyclic [3,3]- and [3,5]-Sigmatropic Rearrangements of Trichloroacetimidates

    No full text
    The Woodward–Hoffmann rules predict whether concerted pericyclic reactions are allowed or forbidden based on the number of electrons involved and whether the cyclic orbital overlap involves suprafacial or antarafacial orbital overlap. Pseudopericyclic reactions constitute a third class of reactions in which orthogonal orbitals make them orbital symmetry allowed, regardless of the number of electrons involved in the reaction. Based on the recent report of eight-centered ester rearrangements, it is predicted that the isoelectronic eight-centered rearrangements of imidates would also be allowed. We now report that these rearrangements occur, and indeed, an eight-centered rearrangement is slightly favored in at least one case over the well-known six-centered Overman rearrangements, in a trichloroacetimidoylcyclohexadienone, a molecular system where both rearrangements are possible

    Experimental and Computational Studies on the [3,3]- and [3,5]-Sigmatropic Rearrangements of Acetoxycyclohexadienones: A Non-ionic Mechanism for Acyl Migration

    No full text
    Flash vacuum pyrolysis studies of substituted 6-acetoxy-2,4-cyclohexadienones (<b>3</b> and <b>10</b>) from 300 to 500 °C provide strong experimental evidence that direct [3,5]-sigmatropic rearrangements in these molecules are favored over the more familiar [3,3]-sigmatropic rearrangements. The preference holds when the results are extrapolated to 0.0% conversion, indicating that this is a concerted process. Pyrolysis of 6,6-diacetoxy-2-methyl-2,4-cyclohexadienone (<b>9</b>) at 350 °C gives a modest yield of the initial [3,5]-sigmatropic rearrangement product, 2,6-diacetoxy-6-methyl-2,4-cyclohexadienone (<b>11</b>). Qualitative arguments and electronic structure theory calculations are in agreement that the lowest energy pathway for each [3,5]-sigmatropic rearrangement is via an allowed, concerted pseudopericyclic transition state. The crystal structures of compounds <b>3</b>, <b>9</b>, and <b>10</b> prefigure these transition states. The selectivity for the [3,5] products increases with an increasing temperature. This unexpected selectivity is explained by a concerted, intramolecular, and pseudopericyclic transition state (<b>TS-5</b>) that forms a tetrahedral interemediate (<i>ortho</i>-acid ester <b>4′</b>), followed by similar ring openings to isomeric phenols, which shifts the equilibrium toward the phenols from the [3,5] (but not the [3,3]) products

    Experimental and Computational Studies on the [3,3]- and [3,5]-Sigmatropic Rearrangements of Acetoxycyclohexadienones: A Non-ionic Mechanism for Acyl Migration

    No full text
    Flash vacuum pyrolysis studies of substituted 6-acetoxy-2,4-cyclohexadienones (<b>3</b> and <b>10</b>) from 300 to 500 °C provide strong experimental evidence that direct [3,5]-sigmatropic rearrangements in these molecules are favored over the more familiar [3,3]-sigmatropic rearrangements. The preference holds when the results are extrapolated to 0.0% conversion, indicating that this is a concerted process. Pyrolysis of 6,6-diacetoxy-2-methyl-2,4-cyclohexadienone (<b>9</b>) at 350 °C gives a modest yield of the initial [3,5]-sigmatropic rearrangement product, 2,6-diacetoxy-6-methyl-2,4-cyclohexadienone (<b>11</b>). Qualitative arguments and electronic structure theory calculations are in agreement that the lowest energy pathway for each [3,5]-sigmatropic rearrangement is via an allowed, concerted pseudopericyclic transition state. The crystal structures of compounds <b>3</b>, <b>9</b>, and <b>10</b> prefigure these transition states. The selectivity for the [3,5] products increases with an increasing temperature. This unexpected selectivity is explained by a concerted, intramolecular, and pseudopericyclic transition state (<b>TS-5</b>) that forms a tetrahedral interemediate (<i>ortho</i>-acid ester <b>4′</b>), followed by similar ring openings to isomeric phenols, which shifts the equilibrium toward the phenols from the [3,5] (but not the [3,3]) products

    Conjugation of Amphiphilic Proteins to Hydrophobic Ligands in Organic Solvent

    No full text
    Protein–ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs (<i>p</i>-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent “conjugates”. After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98–100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in “one pot”, and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few
    corecore