253 research outputs found

    Emerging Pharmacological Properties of Cholinergic Synaptic Transmission: Comparison between Mammalian and Insect Synaptic and Extrasynaptic Nicotinic Receptors

    Get PDF
    Acetylcholine (ACh) is probably the oldest signalling neurotransmitter which appeared in evolution before the nervous system. It is present in bacteria, algae, protozoa and plants. In insects and mammals it is involved in cell-to-cell communications in various neuronal and non-neuronal tissues. The discovery of nicotinic acetylcholine receptors (nAChRs) as the main receptors involved in rapid cholinergic neurotransmission has helped to understand the role of ACh at synaptic level. Recently, several lines of evidence have indicated that extrasynaptically expressed nAChRs display distinct pharmacological properties from the ones expressed at synaptic level. The role of both nAChRs at insect extrasynaptic and/or synaptic levels has been underestimated due to the lack of pharmacological tools to identify different nicotinic receptor subtypes. In the present review, we summarize recent electrophysiological and pharmacological studies on the extrasynaptic and synaptic differences between insect and mammalian nAChR subtypes and we discuss on the pharmacological impact of several drugs such as neonicotinoid insecticides targeting these receptors. In fact, nAChRs are involved in a wide range of pathophysiological processes such as epilepsy, pain and a wide range of neurodegenerative and psychiatric disorders. In addition, they are the target sites of neonicotinoid insecticides which are known to act as nicotinic agonists causing severe poisoning in insects and mammals

    Des insecticides plus sélectifs

    Get PDF
    La découverte d\u27un gène spécifique élargit les voies de recherche pouvant permettre de réduire les "dommages collatéraux" des insecticides

    Identification of cholinergic synaptic transmission in the insect nervous system

    Get PDF
    A major criteria initially used to localize cholinergic neuronal elements in nervous systems tissues that involve acetylcholine (ACh) as neurotransmitter is mainly based on immunochemical studies using choline acetyltransferase (ChAT), an enzyme which catalyzes ACh biosynthesis and the ACh degradative enzyme named acetylcholinesterase (AChE). Immunochemical studies using anti-ChAT monoclonal antibody have allowed the identification of neuronal processes and few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT or AChE messenger RNA have brought new approaches to further identify cell bodies transcribing the ChAT or AChE genes. Combined application of all these techniques reveals a widespread expression of ChAT and AChE activities in the insect central nervous system and peripheral sensory neurons which implicates ACh as a key neurotransmitter. The discovery of the snake toxin alpha-bungatoxin has helped to identify nicotinic acetylcholine receptors (nAChRs). In fact, nicotine when applied to insect neurons, resulted in the generation of an inward current through the activation of nicotinic receptors which were blocked by alpha-bungarotoxin. Thus, insect nAChRs have been divided into two categories, sensitive and insensitive to this snake toxin. Up to now, the recent characterization and distribution pattern of insect nAChR subunits and the biochemical evidence that the insect central nervous system contains different classes of cholinergic receptors indicated that ACh is involved in several sensory pathways

    Injection of insect membrane in Xenopus oocyte: An original method for the pharmacological characterization of neonicotinoid insecticides

    Get PDF
    Insect nicotinic acetylcholine receptors (nAChRs) represent a major target of insecticides, belonging to the neonicotinoid family. However, the pharmacological profile of native nAChRs is poorly documented, mainly because of a lack of knowledge of their subunit stoichiometry, their tissue distribution and the weak access to nAChR-expressing cells. In addition, the expression of insect nAChRs in heterologous systems remains hard to achieve. Therefore, the structure–activity characterization of nAChR-targeting insecticides is made difficult. The objective of the present study was to characterize insect nAChRs by an electrophysiological approach in a heterologous system naturally devoid of these receptors to allow a molecular/cellular investigation of the mode of action of neonicotinoids

    Identification of critical elements determining toxins and insecticide affinity, ligand binding domains and channel properties

    Get PDF
    Insect nicotinic acetylcholine receptors have been objects of attention since the discovery of neonicotinoid insecticides. Mutagenesis studies have revealed that, although the detailed subunit composition of insect nicotinic acetylcholine receptors subtypes eludes us, the framework provided by mutagenesis analysis makes a picture of the subunits involved in the ligand binding and channel properties. In fact, many residues that line the channel or bind to the ligand seemed to be strongly conserved in particular in the N-terminal extracellular region and the second transmembrane domain which constitutes the ion-conducting pathway supporting the flux of ions as well as their discrimination. In fact, the positions are carried by loops B and C, respectively, which contain amino acids directly contributing to the acetylcholine binding site. Mutation ofthese residues accounts for insect resistance to neonicotinoid insecticides such as imidacloprid or a loss ofspecific binding. The discovery of the same mutation at homologous residues in different insect species or its conservation raises the intriguing question of whether a single mutation is essential to generate a resistance phenotype or whether some subunit confer insensitivity to ligand. Consequently, recent finding using information from Torpedo marmorata al subunit and soluble Aplysia californica and Lymnae stagnalis acetylcholine bindingproteins from crystallization suggest that insect nAChR subunits had contributing amino acids in the agonist site structure which participate to affinity and pharmacological properties of these receptors. These new range of data greatly facilitate the understanding of toxin-nAChR interactions and the neonicotinoid binding and selectivity
    corecore