44 research outputs found

    Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/K. S. is funded by an EPSRC PhD studentship. S.T. is funded by an EU Marie Curie Intra European Fellowship (GENOMICDIFF)

    Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading

    Get PDF
    The aim was to assess the role of the composition changes in the pericellular matrix (PCM) for the chondrocyte deformation. For that, a three-dimensional finite element model with depth-dependent collagen density, fluid fraction, fixed charge density and collagen architecture, including parallel planes representing the split-lines, was created to model the extracellular matrix (ECM). The PCM was constructed similarly as the ECM, but the collagen fibrils were oriented parallel to the chondrocyte surfaces. The chondrocytes were modelled as poroelastic with swelling properties. Deformation behaviour of the cells was studied under 15% static compression. Due to the depth-dependent structure and composition of cartilage, axial cell strains were highly depth-dependent. An increase in the collagen content and fluid fraction in the PCMs increased the lateral cell strains, while an increase in the fixed charge density induced an inverse behaviour. Axial cell strains were only slightly affected by the changes in PCM composition. We conclude that the PCM composition plays a significant role in the deformation behaviour of chondrocytes, possibly modulating cartilage development, adaptation and degeneration. The development of cartilage repair materials could benefit from this information

    Bringing CASE in from the cold: the teaching and learning of thinking

    Get PDF
    Thinking Science is a two-year program of professional development for teachers and thinking lessons for students in junior high school science classes. This paper presents research on the effects of Thinking Science on students’ levels of cognition in Australia. The research is timely with a general capability focused on critical thinking in the newly implemented F-10 curriculum in Australia. The design of the research was a quasi-experiment with pre and post-intervention cognitive tests conducted with participating students (n = 655) from nine cohorts in seven high schools. Findings showed significant cognitive gains compared with an age matched control group over the length of the program. Noteworthy, is a correlation between baseline cognitive score and school Index of Community Socio-Educational Advantage (ICSEA). We argue that the teaching of thinking be brought into the mainstream arena of educational discourse and the principles from evidence-based programs such as Thinking Science be universally adopted

    Effect of Cytoskeletal Disruption on Mechanotransduction of Hydrostatic Pressure by C3H10T1/2 Murine Fibroblasts

    Get PDF
    Cyclic hydrostatic pressure of physiological magnitude (< 10 MPa) stimulates chondrogenic differentiation of mesenchymal stem cells, but mechanotransduction mechanisms are not well understood. It was hypothesized that an intact cytoskeleton would be required for uninhibited mechanotransduction of hydrostatic pressure. Therefore we examined the effects of drugs which selectively interfere with actin and tubulin polymerization on pressure-induced upregulation of aggrecan and col2a1 (type II collagen) mRNA expression. C3H10T1/2 cells were cultured as pellets in either 4µM cytochalasin D or 4µM nocodazole and subjected to 3 days of cyclic hydrostatic compression (1 Hz, 5 MPa, 2 h per day). Phalloidin staining and indirect immunostaining with anti α-tubulin antibody confirmed disruption of microfilament and microtubule assemblies, respectively. Real time RT-PCR revealed that both drugs substantially lowered the basal level of aggrecan and col2a1 mRNA, but that neither drug prevented a pressure-stimulated increase in gene expression relative to the altered basal state. Thus upregulation of macromolecular gene expression by cyclic hydrostatic pressure did not require a completely intact cytoskeleton

    Development of a novel motivational interviewing (MI) informed peer-support intervention to support mothers to breastfeed for longer

    Get PDF
    Background: Many women in the UK stop breastfeeding before they would like to, and earlier than is recommended by the World Health Organization (WHO). Given the potential health benefits for mother and baby, new ways of supporting women to breastfeed for longer are required. The purpose of this study was to develop and characterise a novel Motivational Interviewing (MI) informed breastfeeding peer-support intervention. Methods: Qualitative interviews with health professionals and service providers (n=14), and focus groups with mothers (n=14), fathers (n=3), and breastfeeding peer-supporters (n=15) were carried out to understand experiences of breastfeeding peer-support and identify intervention options. Data were audio-recorded, transcribed, and analysed thematically. Consultation took place with a combined professional and lay Stakeholder Group (n=23). The Behaviour Change Wheel (BCW) guided intervention development process used the findings of the qualitative research and stakeholder consultation, alongside evidence from existing literature, to identify: the target behaviour to be changed; sources of this behaviour based on the Capability, Opportunity and Motivation (COM-B) model; intervention functions that could alter this behaviour; and; mode of delivery for the intervention. Behaviour change techniques included in the intervention were categorised using the Behaviour Change Technique Taxonomy Version 1 (BCTTv1). Results: Building knowledge, skills, confidence, and providing social support were perceived to be key functions of breastfeeding peer-support interventions that aim to decrease early discontinuation of breastfeeding. These features of breastfeeding peer-support mapped onto the BCW education, training, modelling and environmental restructuring intervention functions. Behaviour change techniques (BCTTv1) included social support, problem solving, and goal setting. The intervention included important inter-personal relational features (e.g. trust, honesty, kindness), and the BCTTv1 needed adaptation to incorporate this. Conclusions: The MI-informed breastfeeding peer-support intervention developed using this systematic and user-informed approach has a clear theoretical basis and well-described behaviour 3 change techniques. The process described could be useful in developing other complex interventions that incorporate peer-support and/or MI

    Surprisingly Simple Mechanical Behavior of a Complex Embryonic Tissue

    Get PDF
    Background: Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos. Methodology/Principal Findings: We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo. Conclusions/Significance: The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics. © 2010 von Dassow et al

    Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte

    Get PDF
    Chondrocytes, the cells in articular cartilage, exhibit solid-likeviscoelastic behavior in response to mechanical stress. In modelingthe creep response of these cells during micropipette aspiration,previous studies have attributed the viscoelastic behavior ofchondrocytes to either intrinsic viscoelasticity of the cytoplasmor to biphasic effects arising from fluid-solid interactionswithin the cell. However, the mechanisms responsible for theviscoelastic behavior of chondrocytes are not fully understoodand may involve one or both of these phenomena.In this study, the micropipette aspiration experiment was modeledusing a large strain finite element simulation that incorporatedcontact boundary conditions. The cell was modeled using finite strainincompressible and compressible elastic models, a two-modecompressible viscoelastic model, or a biphasic elastic orviscoelastic model. Comparison of the model to the experimentallymeasured response of chondrocytes to a step increase in aspirationpressure showed that a two-mode compressible viscoelastic formulationaccurately captured the creep response of chondrocytes during micropipette aspiration. Similarly, a biphasic two-mode viscoelastic analysis couldpredict all aspects of the cell's creep response to a step aspiration.In contrast, a biphasic elastic formulation was not capable ofpredicting the complete creep response, suggesting that the creepresponse of the chondrocytes under micropipette aspiration ispredominantly due to intrinsic viscoelastic phenomena and is not due to the biphasic behavior

    Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration

    No full text
    Chondrocytes in articular cartilage are regularly subjected to compression and recovery due to dynamic loading of the joint. Previous studies have investigated the elastic and viscoelastic properties of chondrocytes using micropipette aspiration techniques, but in order to calculate cell properties, these studies have generallyassumed that cells are incompressible with a Poisson’s ratio of 0.5. The goal of this studywas to measure the Poisson’s ratio and recoveryproperties of the chondrocyte by combining theoretical modeling with experimental measures of complete cellular aspiration and release from a micropipette. Chondrocytes isolated from non-osteoarthritic and osteoarthritic cartilage were fullyaspirated into a micropipette and allowed to reach mechanical equilibrium. Cells were then extruded from the micropipette and cell volume and morphologywere measured throughout the experiment. This experimental procedure was simulated with finite element analysis, modeling the chondrocyte as either a compressible two-mode viscoelastic solid, or as a biphasic viscoelastic material. Byfitting the experimental data to the theoreticallypredicted cell response, the Poisson’s ratio and the viscoelastic recoveryproperties of the cell were determined. The Poisson’s ratio of chondrocytes was found to be 0.38 for non-osteoarthritic cartilage and 0.36 for osteoarthritic chondrocytes (no significant difference). Osteoarthritic chondrocytes showed an increased recovery time following full aspiration. In contrast to previous assumptions, these findings suggest that chondrocytes are compressible, consistent with previous studies showing cell volume changes with compression of the extracellular matrix
    corecore