41 research outputs found

    Factors controlling the groundwater transport of U, Th, Ra, and Rn

    Get PDF
    A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the ^(238)U and ^(232)Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the ^(238)U and ^(232)Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰ_i, characteristic of each nuclide. Where ϰ_i is much longer than the aquifer length, (for ^(238)U, ^(234)U, and ^(232)Th), the activities grow linearly with distance. Where ϰ_i is short compared to the aquifer length, (for ^(234)Th, ^(230)Th, ^(228)Th, ^(228)Ra, and ^(224)Ra), the activities rapidly reach a constant or quasi-constant activity value. For ^(226)Ra and ^(222)Rn, the limiting activity is reached after 1 km. High δ ^(234)U values (proportional to the ratio ^(ɛ234)Th/^(W238)U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios ^(230)Th/^(232)Th, ^(228)Ra/^(226)Ra and ^(224)Ra/^(226)Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for ^(228)Ra/^(226)Ra and ^(224)Ra/^(226)Ra activity ratios less than unity. From the model, the highest ^(222)Rn emanation equals 2_ɛ. This is in agreement with the hypothesis that ^(222)Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high ^(222)Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state

    Nanocomposite MFI-alumina and FAU-alumina Membranes: Synthesis, Characterization and Application to Paraffin Separation and CO2 Capture

    Get PDF
    Rouleau, L. Pirngruber, G. Guillou, F. Barrere-Tricca, C. Omegna, A. Valtchev, V. Pera-Titus, M. Miachon, S. Dalmon, J. A.International audienceIn this work, we report the preparation of thermally and mechanically resistant high-surface (24-cm2) nanocomposite MFI-alumina and FAUalumina membranes by pore-plugging synthesis inside the macropores of α-alumina multilayered tubular supports. The MFI membranes were prepared from a clear solution precursor mixture being able to easily penetrate into the pores of the support. The MFI membranes were evaluated in the separation of n-/i-butane mixtures. The synthesis reliability was improved by mild stirring. The most selective MFI membranes were obtained for supports with mean pore sizes of 0.2 and 0.8 μm. The MFI effective thickness could be reduced to less than 10 μm by impregnating the support with water prior to synthesis and by diluting the synthesis mixture. The best MFI membrane offered an excellent tradeoff between selectivity and permeance at 448 K, with separation factors for equimolar n-butane/i-butane mixtures up to 18 and n-butane mixture permeances as high as 0.7 μmol\cdots-1\cdotm-2\cdotPa-1.Furthermore, a novel nanocomposite FAU membrane architecture has been obtained by an original synthesis route including in situ seeding using a cold gel-like precursor mixture, followed by growth of the FAU material by hydrothermal synthesis in two steps using a clear solution of low viscosity. This new membrane showed interesting performance in the separation of an equimolar CO2/N2 mixture at 323 K, with CO2/N2 separation factors and mixture CO2 permeances up to 12 and 0.4 μmol\cdots-1\cdotm-2\cdotPa-1,respectively

    "Delirium Day": A nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool

    Get PDF
    Background: To date, delirium prevalence in adult acute hospital populations has been estimated generally from pooled findings of single-center studies and/or among specific patient populations. Furthermore, the number of participants in these studies has not exceeded a few hundred. To overcome these limitations, we have determined, in a multicenter study, the prevalence of delirium over a single day among a large population of patients admitted to acute and rehabilitation hospital wards in Italy. Methods: This is a point prevalence study (called "Delirium Day") including 1867 older patients (aged 65 years or more) across 108 acute and 12 rehabilitation wards in Italian hospitals. Delirium was assessed on the same day in all patients using the 4AT, a validated and briefly administered tool which does not require training. We also collected data regarding motoric subtypes of delirium, functional and nutritional status, dementia, comorbidity, medications, feeding tubes, peripheral venous and urinary catheters, and physical restraints. Results: The mean sample age was 82.0 \ub1 7.5 years (58 % female). Overall, 429 patients (22.9 %) had delirium. Hypoactive was the commonest subtype (132/344 patients, 38.5 %), followed by mixed, hyperactive, and nonmotoric delirium. The prevalence was highest in Neurology (28.5 %) and Geriatrics (24.7 %), lowest in Rehabilitation (14.0 %), and intermediate in Orthopedic (20.6 %) and Internal Medicine wards (21.4 %). In a multivariable logistic regression, age (odds ratio [OR] 1.03, 95 % confidence interval [CI] 1.01-1.05), Activities of Daily Living dependence (OR 1.19, 95 % CI 1.12-1.27), dementia (OR 3.25, 95 % CI 2.41-4.38), malnutrition (OR 2.01, 95 % CI 1.29-3.14), and use of antipsychotics (OR 2.03, 95 % CI 1.45-2.82), feeding tubes (OR 2.51, 95 % CI 1.11-5.66), peripheral venous catheters (OR 1.41, 95 % CI 1.06-1.87), urinary catheters (OR 1.73, 95 % CI 1.30-2.29), and physical restraints (OR 1.84, 95 % CI 1.40-2.40) were associated with delirium. Admission to Neurology wards was also associated with delirium (OR 2.00, 95 % CI 1.29-3.14), while admission to other settings was not. Conclusions: Delirium occurred in more than one out of five patients in acute and rehabilitation hospital wards. Prevalence was highest in Neurology and lowest in Rehabilitation divisions. The "Delirium Day" project might become a useful method to assess delirium across hospital settings and a benchmarking platform for future surveys

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Factors controlling the groundwater transport of U, Th, Ra, and Rn

    No full text
    A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the 238U and 232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the 238U and 232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance x(i), characteristic of each nuclide. Where x(i) is much longer than the aquifer length, (for 238U, 234U, and 232Th), the activities grow linearly with distance. Where x(i) is short compared to the aquifer length, (for 234Th, 230Th, 228Th, 228Ra, and 224Ra), the activities rapidly reach a constant or quasi-constant activity value. For 226Ra and 222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratio ε(234Th)/W(238U)) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios 230Th/232Th, 228Ra/226Ra and 224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for 228Ra/226Ra and 224Ra/226Ra activity ratios less than unity. From the model, the highest 222Rn emanation equals 2ε. This is in agreement with the hypothesis that 222Rn activity can be used as a first approximation for input by recoil (Krishnaswami et al 1982). However, high 222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state

    The transport of U- and Th-series nuclides in a sandy unconfined aquifer

    No full text
    A comprehensive evaluation of the transport of U, Th, Ra, and Rn nuclides of the ^(238)U- and ^(232)Th-decay series in an unconfined sandy aquifer (Long Island, NY) was conducted. Groundwater data are compared with results of a theoretical transport model of weathering of aquifer grains and interaction with surface coatings to establish relationships between the concentrations of the radionuclide activities in the water and flow line distance. The data provide estimates for geochemical parameters including weathering rates and chemical reactivities in both the vadose zone and the aquifer. A theoretical treatment of the transport is presented that considers the reaction between the water and a reactive surface layer. It is found that a model with chemical exchange between the surface layer and the water for all species is not valid, and that the effects of saturation and “irreversible” precipitation of Th is required. The water table shows a relatively wide range in U activities, the only element in the U-Th series for which vadose zone input is significant in the aquifer. High weathering of U and recoil inputs of ^(234)U to the water occur in the upper 3 m of the vadose zone, while lower weathering and removal of U from the water occur below. The deeper aquifer has variable ^(238)U activities that can be accounted for by input from the vadose zone and is not a result of non-conservative behavior. The isotopic composition of U is shown to be directly related to the recoil rate relative to the weathering rate. The wide range of ^(238)U in the aquifer waters is a reflection of diverse vadose zone inputs, showing that dispersive mixing is not a dominant effect. The higher values of δ^(234)U in the aquifer reflect the recoil/weathering input ratios from within the aquifer where the weathering rate is lower than the vadose zone. Both high U activities and high δ^(234)U values cannot be obtained in the vadose zone or within reasonable flow distances in the aquifer. Radium isotopes are found to be in exchange equilibrium with the surface layer. ^(224)Ra, ^(228)Ra, and ^(226)Ra have comparable activities throughout the aquifer. In the vadose zone, the dominant input of Ra to groundwater is weathering and recoil. As found elsewhere, the ^(222)Rn in the water is a large fraction (∼5%) of the Rn produced in the aquifer rock. This cannot be due to Ra precipitation onto surface coatings in the aquifer as supported by present weathering with Th in exchange equilibrium with the surface layer. It is found that Th is saturated in the waters under oxidizing conditions so that the weathering input is irreversibly precipitating onto surfaces. However, it is shown that under somewhat reducing conditions, Th activities are much higher and the Th/U ratio in the solution is approximately that of the rock. We propose that under oxidizing conditions the source of Rn is a surface coating enriched in ^(232)Th and ^(230)Th. This Th was precipitated in an earlier phase during rapid dissolution of readily weathered phases that contain ∼10% of the U-Th inventory of the rock, with the associated U carried away in solution. Therefore, the previously precipitated ^(230)Th and ^(232)Th produce daughter nuclides in the surface coating which are the dominant contributors of Ra and Rn to the ground water. In particular, Rn is provided by very efficient losses (by diffusion or recoil) from the surface coating. This then does not require recent, large recoil losses from the parent rock or the presence of nanopores in the rock. The first data of both long-lived ^(232)Th and short-lived ^(234)Th and ^(228)Th in ground water is reported. The Th isotope activities indicate that desorption kinetics are slow and provide the first estimate, based on field data, of the Th desorption rate from an aquifer surface. The mean residence time of Th in the surface coating is ∼3000 y while in the water it is ∼1 h. Ra is in partition equilibrium with the aquifer surface layer. However, the strong fixation of Th on surface coatings is very susceptible to changes in oxidation state as is shown by a comparison of two adjacent aquifers. This makes it difficult to define with certainty the retentive characteristics in natural systems. In general, it is shown that the distributions of naturally occurring nuclides can be used to calculate values for transport parameters that are applicable to the transport of anthropogenic nuclides

    PERI AND POST-OPERATIVE MANAGEMENT OF A PATIENT WITH BRUGADA SYNDROME UNDERGOING MANDIBLE CYST REMOVAL: A CASE REPORT

    No full text
    Brugada syndrome (BS) is an inherited cardiac disease that can lead to SCA (sudden cardiac arrest) in healthy young patients with structurally healthy hearts. Several treatments in common dental practice may be involved in the genesis of life-threatening arrhythmias, and local anesthetics themselves can have a potential role in eliciting the disease. Since surgical procedures can trigger the genesis of ominous arrhythmias, the setting — of proper peri and post-operative protocols is mandatory when treating this type of patient. Anesthesiologic and cardiovascular risk must be conducted with particular care, and some procedures, such as placement of an external defibrillator along with continuous blood pressure and ECG monitoring, are needed to prevent the potential onset of arrhythmias. BS is a life-threatening condition, and despite its relatively low incidence, dentists should be aware of related risks since even simple local anesthesia may trigger a fatal arrhythmia. The aim of this case report is to describe the peri and post-operative management of a patient with BS undergoing mandible cyst removal
    corecore