1,194 research outputs found

    On the thermal conduction in tangled magnetic fields in clusters of galaxies

    Get PDF
    Thermal conduction in tangled magnetic fields is reduced because heat conducting electrons must travel along the field lines longer distances between hot and cold regions of space than if there were no fields. We consider the case when the tangled magnetic field has a weak homogeneous component. We examine two simple models for temperature in clusters of galaxies: a time-independent model and a time-dependent one. We find that the actual value of the effective thermal conductivity in tangled magnetic fields depends on how it is defined for a particular astrophysical problem. Our final conclusion is that the heat conduction never totally suppressed but is usually important in the central regions of galaxy clusters, and therefore, it should not be neglected.Comment: 16 pages, 4 figure

    A flight experiment to determine GPS photochemical contamination accumulation rates

    Get PDF
    It was recently suggested that photochemically deposited contamination, originating from volatiles outgassed by a spacecraft, may be responsible for the anomalous degradation in power seen on the GPS Block 1 vehicles. In an attempt to confirm, or deny, the photochemical deposition rates predicted, a study was undertaken to design a flight experiment to be incorporated on the GPS vehicles currently in production. The objective was to develop an inexpensive, light weight instrument package that would give information on the contamination levels within a few months of launch. Three types of apparatus were studied, Quartz Crystal Microbalances, (QCM's), modified solar cells, and calorimeters. A calorimeter was selected due primarily to its impact on the production schedule of the GPS vehicles. An analysis of the sensitivity of the final design is compared to the predicted contamination accumulation rates in order to determine how long after launch it will take the experiment to show the effects of photochemical contamination

    RXTE and ASCA Constraints on Non-thermal Emission from the A2256 Galaxy Cluster

    Get PDF
    An 8.3 hour observation of the Abell 2256 galaxy cluster using the Rossi X-ray Timing Explorer proportional counter array produced a high quality spectrum in the 2 - 30 keV range. Joint fitting with the 0.7 - 11 keV spectrum obtained with the Advanced Satellite for Astrophysics and Cosmology gas imaging spectrometer gives an upperlimit of 2.3x10^-7 photons/cm^2/sec/keV for non-thermal emission at 30 keV. This yields a lower limit to the mean magnetic field of 0.36 micro Gauss (uG) and an upperlimit of 1.8x10^-13 ergs/cm^3 for the cosmic-ray electron energy density. The resulting lower limit to the central magnetic field is ~1 - 3 uG While a magnetic field of ~0.1 - 0.2 uG can be created by galaxy wakes, a magnetic field of several uG is usually associated with a cooling flow or, as in the case of the Coma cluster, a subcluster merger. However, for A2256, the evidence for a merger is weak and the main cluster shows no evidence of a cooling flow. Thus, there is presently no satisfactory hypothesis for the origin of an average cluster magnetic field as high as >0.36 uG in the A2256 cluster.Comment: 8 pages, Astrophysical Journal (in press

    Global analysis of muon decay measurements

    Get PDF
    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other non-standard model interactions are comparable. The value of the Michel parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table

    Lambda hyperonic effect on the normal driplines

    Full text link
    A generalized mass formula is used to calculate the neutron and proton drip lines of normal and lambda hypernuclei treating non-strange and strange nuclei on the same footing. Calculations suggest existence of several bound hypernuclei whose normal cores are unbound. Addition of Lambda or, Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur

    Magnetic Field Evolution in Merging Clusters of Galaxies

    Get PDF
    We present initial results from the first 3-dimensional numerical magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging clusters of galaxies. Within the framework of idealized initial conditions similar to our previous work, we look at the gasdynamics and the magnetic field evolution during a major merger event in order to examine the suggestion that shocks and turbulence generated during a cluster/subcluster merger can produce magnetic field amplification and relativistic particle acceleration and, as such, may play a role in the formation and evolution of cluster-wide radio halos. The ICM, as represented by the equations of ideal MHD, is evolved self-consistently within a changing gravitational potential defined largely by the collisionless dark matter component represented by an N-body particle distribution. The MHD equations are solved by the Eulerian, finite-difference code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We find significant evolution of the magnetic field structure and strength during two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for publication in Ap

    Gamma-ray probe of cosmic-ray pressure in galaxy clusters and cosmological implications

    Get PDF
    Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic-ray ions in the ICM is still lacking, they produce gamma-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope (GLAST) and imaging atmospheric Cerenkov telescopes (IACTs) for constraining the cosmic-ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (<~10%) constraints for distant (z <~ 0.25) clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic-ray spectrum potentially provided by IACTs. Future gamma-ray observations of clusters can constrain the evolution of cosmic-ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev-Zel'dovich effect cluster surveys.Comment: 12 pages, 5 figures; extended discussions; accepted by MNRA
    • …
    corecore