91 research outputs found
QoS and energy efficient resource allocation in downlink OFDMA systems
In this paper we present and evaluate the performance of a resource allocation algorithm to enhance the Quality of Service (QoS) provision and energy efficiency of downlink Orthogonal Frequency Division Multiple Access (OFDMA) systems. The proposed algorithm performs resource allocation using information on the downlink packet delay, the average delay and data rate of past allocations, as well as the downlink users' buffer status in order to minimize packet segmentation. Based on simulation results, the proposed algorithm achieves significant performance improvement in terms of packet timeout rate, goodput, fairness, and average delay. Moreover, the effect of poor QoS provision on energy efficiency is demonstrated through the evaluation of the performance in terms of energy consumption per successfully received bit
Optimal Network Discovery Period for Energy-Efficient WLAN Offloading
In this paper we present an analytical framework that aims to improve the energy efficiency of traffic offloading via Wireless Local Area Networks, taking into account the energy consumption for both data transmission and network discovery operations. More specifically, the network scanning period is optimized in order to minimize the energy consumption in a vehicular scenario where a user moves along a road covered by a long range cellular network and a number of randomly deployed Wireless Local Area Networks. The performance of the system that performs periodic network scanning with the optimal period is compared against a sub-optimal system that does not take into consideration the user and network context information when determining the network scanning period. According to performance evaluation results, the use of the optimal network scanning period achieves significant improvement in terms of energy consumption and network detection delay
Resource allocation with MAC layer node cooperation in cognitive radio networks
An algorithm for cooperative Dynamic Spectrum Access in Cognitive Radio networks is presented. The proposed algorithm utilizes Medium Access Control layer mechanisms for message exchange between secondary nodes that operate in license exempt spectrum bands, in order to achieve interference mitigation. A fuzzy logic reasoner is utilized in order to take into account the effect of the coexistence of a large number of users in the interference as well as to cope for uncertainties in the message exchange, caused by the nodes' mobility and the large delays in the updating of the necessary information. The proposed algorithm is applied in Filter Bank Multicarrier, as well as Orthogonal Frequency Division Multiplexing systems, and its performance is evaluated through extensive simulations that cover a wide range of typical scenarios. Experimental results indicate improved behaviour compared to previous schemes, especially in the case of uncertainties that cause underestimation of the interference levels
Transmission power regulation in cooperative Cognitive Radio systems under uncertainties
An algorithm for power control in cooperative Cognitive Radio networks is proposed. The algorithm utilizes Medium Access Control layer mechanisms for message exchange between the nodes, in order to achieve interference mitigation. A fuzzy logic reasoner is used to cope for uncertainties that appear in real life systems, caused from parameters such as non-ideal message exchange or high user mobility. The proposed algorithm is applied in Filter Bank Multicarrier as well as Orthogonal Frequency Division Multiplexing systems under various scenarios and its performance is evaluated through extensive simulations. Experimental results indicate improved behavior compared to previous schemes, especially in the case of uncertainties that cause underestimation of the interference levels
QoS and Energy Efficient Resource Allocation in Downlink OFDMA systems
In this paper we present and evaluate the performance of a resource allocation algorithm to enhance the Quality of Service (QoS) provision and energy efficiency of downlink Orthogonal Frequency Division Multiple Access (OFDMA) systems. The proposed algorithm performs resource allocation using information on the downlink packet delay, the average delay and data rate of past allocations, as well as the downlink users' buffer status in order to minimize packet segmentation. Based on simulation results, the proposed algorithm achieves significant performance improvement in terms of packet timeout rate, goodput, fairness, and average delay. Moreover, the effect of poor QoS provision on energy efficiency is demonstrated through the evaluation of the performance in terms of energy consumption per successfully received bit
Uplink Resource Allocation for Real-Time Applications in SC-FDMA Networks
In this paper we present and evaluate the performance of a resource allocation algorithm to enhance the Quality of Service (QoS) provision and energy efficiency of uplink Long Term Evolution (LTE) systems. The proposed algorithm considers the main constraints in uplink LTE resource allocation, i.e., the allocation of contiguous sets of resource blocks of the Single Carrier – Frequency Division Multiple Access (SC-FDMA) physical layer to each user, and the imperfect knowledge of the users' uplink buffer status and packet waiting time. Resource allocation is performed using information on the estimated uplink packet delay, the average delay and data rate of past allocations, as well as the required uplink power per resource block. According to simulation results, the proposed algorithm achieves significant performance improvement in terms of packet loss rate, goodput, fairness, and energy efficiency. Moreover, the effect of poor QoS provision on energy efficiency is demonstrated through the evaluation of the performance in terms of energy consumption per successfully received bit
Resource allocation with MAC layer node cooperation in cognitive radio networks
An algorithm for cooperative Dynamic Spectrum Access in Cognitive Radio networks is presented. The proposed algorithm utilizes Medium Access Control layer mechanisms for message exchange between secondary nodes that operate in license exempt spectrum bands, in order to achieve interference mitigation. A fuzzy logic reasoner is utilized in order to take into account the effect of the coexistence of a large number of users in the interference as well as to cope for uncertainties in the message exchange, caused by the nodes' mobility and the large delays in the updating of the necessary information. The proposed algorithm is applied in Filter Bank Multicarrier, as well as Orthogonal Frequency Division Multiplexing systems, and its performance is evaluated through extensive simulations that cover a wide range of typical scenarios. Experimental results indicate improved behaviour compared to previous schemes, especially in the case of uncertainties that cause underestimation of the interference levels. Copyright © 2010 A. Merentitis and D. Triantafyllopoulou
Mobility Management for WLANs
This book aims to serve as a comprehensive technicalguide and reference material for practitioners, engineers, scientists and researchers providing them withthe state-of-the-art of research work and recentachievements in different aspects ..
QoS and Energy Efficient Resource Allocation in Uplink SC-FDMA Systems
In this paper we present and evaluate the performance of a resource allocation algorithm to enhance the Quality of Service (QoS) provision and energy efficiency of uplink Long Term Evolution (LTE) systems. The proposed algorithm considers the main constraints in uplink LTE resource allocation, i.e., the allocation of contiguous sets of resource blocks of the localized Single Carrier – Frequency Division Multiple Access (SC-FDMA) physical layer to each user, and the imperfect knowledge of the users' uplink buffer status and packet waiting time. The optimal resource allocation is formulated as a discrete connected cake-cutting problem, where different agents are allocated consecutive subsequences of a sequence of indivisible items. This problem is NP-hard, therefore a suboptimal algorithm is introduced, which performs resource allocation using information on the estimated uplink packet delay, the average delay and data rate of past allocations, as well as the required uplink power per resource block. Based on simulation results, the proposed algorithm achieves significant performance improvement in terms of packet timeout rate, goodput, and fairness. Moreover, the effect of poor QoS provision on energy efficiency is demonstrated through the evaluation of the performance in terms of energy consumption per successfully received bit
- …