62 research outputs found

    Location, Location, Location: Is Membrane Partitioning Everything When It Comes to Innate Immune Activation?

    Get PDF
    In the last twenty years, the general view of the plasma membrane has changed from a homogeneous arrangement of lipids to a mosaic of microdomains. It is currently thought that islands of highly ordered saturated lipids and cholesterol, which are laterally mobile, exist in the plane of the plasma membrane. Lipid rafts are thought to provide a means to explain the spatial segregation of certain signalling pathways emanating from the cell surface. They seem to provide the necessary microenvironment in order for certain specialised signalling events to take place, such as the innate immune recognition. The innate immune system seems to employ germ-lined encoded receptors, called pattern recognition receptors (PRRs), in order to detect pathogens. One family of such receptors are the Toll-like receptors (TLRs), which are the central “sensing” apparatus of the innate immune system. In recent years, it has become apparent that TLRs are recruited into membrane microdomains in response to ligands. These nanoscale assemblies of sphingolipid, cholesterol, and TLRs stabilize and coalesce, forming signalling platforms, which transduce signals that lead to innate immune activation. In the current paper, we will investigate all past and current literature concerning recruitment of extracellular and intracellular TLRs into lipid rafts and how this membrane organization modulates innate immune responses

    Detection of Erythropoietin in Exhaled Breath Condensate of Nonhypoxic Subjects Using a Multiplex Bead Array

    Get PDF
    As a noninvasive method, exhaled breath condensate (EBC) has gained importance to improve monitoring of lung diseases and to detect biomarkers. The aim of the study was to investigate, whether erythropoietin (EPO) is detectable in EBC. EBC was collected from 22 consecutive patients as well as from healthy individuals. Using a multiplex fluorescent bead immunoassay, we detected EPO in EBC, as well as tumour necrosis factor-α (TNF-α) in 13 out of 22 patients simultaneously (EPO 0.21 ± 0.03 in U/mL and TNF-α 34.6 ± 4.2 in pg/mL, mean ± SEM). No significant differences for EPO levels or correlation between EPO and TNF-α were found but TNF-α was significantly higher in patients with chronic obstructive pulmonary disease (COPD) than in non-COPD (obstructive sleep apnoea, OSA, and lung healthy patients). This is the first report of detection of EPO in EBC. Due to the small study size more data is needed to clarify the role of EPO in EBC

    Metabolic regulators of enigmatic inflammasomes in autoimmune diseases and crosstalk with innate immune receptors

    Get PDF
    Nucleotide-binding domain and leucine-rich repeat receptor (NLR)-mediated inflammasome activation is important in host response to microbes, danger-associated molecular patterns (DAMPs) and metabolic disease. Some NLRs have been shown to interact with distinct cell metabolic pathways and cause negative regulation, tumorigenesis and autoimmune disorders, interacting with multiple innate immune receptors to modulate disease. NLR activation is therefore crucial in host response and in the regulation of metabolic pathways that can trigger a wide range of immunometabolic diseases or syndromes. However, the exact mode by which some of the less well-studied NLR inflammasomes are activated, interact with other metabolites and immune receptors, and the role they play in the progression of metabolic diseases is still not fully elucidated. In this study, we review up-to-date evidence regarding NLR function in metabolic pathways and the interplay with other immune receptors involved in GPCR signalling, gut microbiota and the complement system, in order to gain a better understanding of its link to disease processes

    Inflammasome priming in sterile inflammatory disease

    Get PDF
    The inflammasome is a cytoplasmic protein complex that processes interleukins (IL)-1β and IL-18, and drives a form of cell death known as pyroptosis. Oligomerization of this complex is actually the second step of activation, and a priming step must occur first. This involves transcriptional upregulation of pro-IL-1β, inflammasome sensor NLRP3, or the non-canonical inflammasome sensor caspase-11. An additional aspect of priming is the post-translational modification of particular inflammasome constituents. Priming is typically accomplished in vitro using a microbial Toll-like receptor (TLR) ligand. However, it is now clear that inflammasomes are activated during the progression of sterile inflammatory diseases such as atherosclerosis, metabolic disease, and neuroinflammatory disorders. Therefore, it is time to consider the endogenous factors and mechanisms that may prime the inflammasome in these conditions

    An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation

    Get PDF
    Different immune activation states require distinct metabolic features and activities in immune cells. For instance, inhibition of fatty acid synthase (FASN), which catalyzes the synthesis of long-chain fatty acids, prevents the proinflammatory response in macrophages; however, the precise role of this enzyme in this response remains poorly defined. Consistent with previous studies, we found here that FASN is essential for lipopolysaccharide-induced, Toll-like receptor (TLR)-mediated macrophage activation. Interestingly, only agents that block FASN upstream of acetoacetyl-CoA synthesis, including the well-characterized FASN inhibitor C75, inhibited TLR4 signaling, while those acting downstream had no effect. We found that acetoacetyl-CoA could overcome C75's inhibitory effect, whereas other FASN metabolites, including palmitate, did not prevent C75-mediated inhibition. This suggested an unexpected role for acetoacetyl-CoA in inflammation that is independent of its role in palmitate synthesis. Our evidence further suggested that acetoacetyl-CoA arising from FASN activity promotes cholesterol production, indicating a surprising link between fatty acid synthesis and cholesterol synthesis. We further demonstrate that this process is required for TLR4 to enter lipid rafts and facilitate TLR4 signaling. In conclusion, we have uncovered an unexpected link between FASN and cholesterol synthesis that appears to be required for TLR signal transduction and proinflammatory macrophage activation

    Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication

    Get PDF
    Human rhinovirus (HRV), like coronavirus (HCoV), are positive-strand RNA viruses that cause both upper and lower respiratory tract illness, with their replication facilitated by concentrating RNA-synthesizing machinery in intracellular compartments made of modified host membranes, referred to as replication organelles (ROs). Here we report a non-canonical, essential function for stimulator of interferon genes (STING) during HRV infections. While the canonical function of STING is to detect cytosolic DNA and activate inflammatory responses, HRV infection triggers the release of STIM1-bound STING in the ER by lowering Ca2+, thereby allowing STING to interact with phosphatidylinositol 4-phosphate (PI4P) and traffic to ROs to facilitates viral replication and transmission via autophagy. Our results thus hint a critical function of STING in HRV viral replication and transmission, with possible implications for other RO-mediated RNA viruses

    Differential recognition of HIV-stimulated IL-1? and IL-18 secretion through NLR and NAIP signalling in monocyte-derived macrophages

    Get PDF
    Macrophages are important drivers of pathogenesis and progression to AIDS in HIV infection. The virus in the later phases of the infection is often predominantly macrophage-tropic and this tropism contributes to a chronic inflammatory and immune activation state that is observed in HIV patients. Pattern recognition receptors of the innate immune system are the key molecules that recognise HIV and mount the inflammatory responses in macrophages. The innate immune response against HIV-1 is potent and elicits caspase-1-dependent pro-inflammatory cytokine production of IL-1β and IL-18. Although, NLRP3 has been reported as an inflammasome sensor dictating this response little is known about the pattern recognition receptors that trigger the “priming” signal for inflammasome activation, the NLRs involved or the HIV components that trigger the response. Using a combination of siRNA knockdowns in monocyte derived macrophages (MDMs) of different TLRs and NLRs as well as chemical inhibition, it was demonstrated that HIV Vpu could trigger inflammasome activation via TLR4/NLRP3 leading to IL-1β/IL-18 secretion. The priming signal is triggered via TLR4, whereas the activation signal is triggered by direct effects on Kv1.3 channels, causing K+ efflux. In contrast, HIV gp41 could trigger IL-18 production via NAIP/NLRC4, independently of priming, as a one-step inflammasome activation. NAIP binds directly to the cytoplasmic tail of HIV envelope protein gp41 and represents the first non-bacterial ligand for the NAIP/NLRC4 inflammasome. These divergent pathways represent novel targets to resolve specific inflammatory pathologies associated with HIV-1 infection in macrophages

    Complement membrane attack complex is an immunometabolic regulator of NLRP3 activation and IL-18 secretion in human macrophages

    Get PDF
    The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type
    corecore