143 research outputs found

    A CASE STUDY OF STRIDE FREQUENCY AND SWING TIME IN ELITE ABLE-BODIED SPRINT RUNNING: IMPLICATIONS FOR AMPUTEE DEBATE

    Get PDF
    Recent research into trans-tibial double-amputee sprint performance has debated the possible inherent advantages, disadvantages and limitations to sprinting with prosthetic limbs compared to healthy limbs. Biomechanical data gathered throughout a training season from an elite able-bodied sprinter provide a new perspective on this debate. Peak stride frequency was measured at 2.62 Hz, and the corresponding swing time was estimated to be 0.287 s in the able-bodied sprinter. Published swing time and stride frequency values from the double-amputee at maximum velocity, thought to be beyond biological limits, therefore may not be so, although previously published research has provided evidence that some joint kinetic values from the double-amputee have not been shown in elite able-bodied sprinting

    A CASE STUDY OF STRIDE FREQUENCY AND SWING TIME IN ELITE ABLEBODIED SPRINT RUNNING: IMPLICATIONS FOR AMPUTEE DEBATE

    Get PDF
    Recent research into trans-tibial double-amputee sprint performance has debated the possible inherent advantages, disadvantages and limitations to sprinting with prosthetic limbs compared to healthy limbs. Biomechanical data gathered throughout a training season from an elite able-bodied sprinter provide a new perspective on this debate. Peak stride frequency was measured at 2.62 Hz, and the corresponding swing time was estimated to be 0.287 s in the able-bodied sprinter. Published swing time and stride frequency values from the double-amputee at maximum velocity, thought to be beyond biological limits, therefore may not be so, although previously published research has provided evidence that some joint kinetic values from the double-amputee have not been shown in elite able-bodied sprinting

    Does the Reliability of Reporting in Injury Surveillance Studies Depend on Injury Definition?

    Get PDF
    Background: Choosing an appropriate definition for injury in injury surveillance studies is essential to ensure a balance among reporting reliability, providing an accurate representation of injury risk, and describing the nature of the clinical demand. Purpose: To provide guidance on the choice of injury definition for injury surveillance studies by comparing within- and between-team variability in injury incidence with >24-hour and >7-day time-loss injury definitions in a large multiteam injury surveillance study. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Injury data were reported for 2248 professional rugby union players from 15 Premiership Rugby clubs over 12 seasons. Within-team percentage coefficient of variation and mean between-team standard deviation (expressed as a percentage coefficient of variation) in injury incidence rates (injuries per 1000 player match hours) were calculated. For both variables, a comparison was made between >24-hour and >7-day injury incidence rates in terms of the magnitude of the observed effects. Results: The overall mean incidence across the population with a >24-hour time-loss injury definition was approximately double the reported incidence with the >7-day definition. There was a 10% higher between-team variation in match injury incidence rates with the >24-hour time-loss definition versus the >7-day definition. Conclusion: There was a likely higher degree of between-team variation in match injury incidence rates with a >24-hour time-loss definition than with a >7-day definition of injury. However, in professional sports settings, it is likely that the benefits of using a more inclusive definition of injury (improved understanding of clinical demand and the appropriate and accurate reporting of injury risk) outweigh the small increase in variation in reporting consistency

    The physical demands of elite English rugby union

    Get PDF

    Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case-studies

    Get PDF
    This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown
    • …
    corecore