15 research outputs found

    Citizen Science as an Approach for Overcoming Insufficient Monitoring and Inadequate Stakeholder Buy-in in Adaptive Management: Criteria and Evidence

    No full text
    Adaptive management is broadly recognized as critical for managing natural resources, yet in practice it often fails to achieve intended results for two main reasons: insufficient monitoring and inadequate stakeholder buy-in. Citizen science is gaining momentum as an approach that can inform natural resource management and has some promise for solving the problems faced by adaptive management. Based on adaptive management literature, we developed a set of criteria for successfully addressing monitoring and stakeholder related failures in adaptive management and then used these criteria to evaluate 83 citizen science case studies from peer-reviewed literature. The results suggest that citizen science can be a cost-effective method to collect essential monitoring information and can also produce the high levels of citizen engagement that are vital to the adaptive management learning process. The analysis also provides a set of recommendations for citizen science program design that addresses spatial and temporal scale, data quality, costs, and effective incentives to facilitate participation and integration of findings into adaptive management

    Citizen Science as an Approach for Overcoming Insufficient Monitoring and Inadequate Stakeholder Buy-in in Adaptive Management: Criteria and Evidence

    No full text
    Adaptive management is broadly recognized as critical for managing natural resources, yet in practice it often fails to achieve intended results for two main reasons: insufficient monitoring and inadequate stakeholder buy-in. Citizen science is gaining momentum as an approach that can inform natural resource management and has some promise for solving the problems faced by adaptive management. Based on adaptive management literature, we developed a set of criteria for successfully addressing monitoring and stakeholder related failures in adaptive management and then used these criteria to evaluate 83 citizen science case studies from peer-reviewed literature. The results suggest that citizen science can be a cost-effective method to collect essential monitoring information and can also produce the high levels of citizen engagement that are vital to the adaptive management learning process. The analysis also provides a set of recommendations for citizen science program design that addresses spatial and temporal scale, data quality, costs, and effective incentives to facilitate participation and integration of findings into adaptive management

    Fetal Physiologically-Based Pharmacokinetic Models:Systems Information on Fetal Biometry and Gross Composition

    No full text

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore