22 research outputs found

    Comparative analysis of long DNA sequences by per element information content using different contexts

    Get PDF
    BACKGROUND: Features of a DNA sequence can be found by compressing the sequence under a suitable model; good compression implies low information content. Good DNA compression models consider repetition, differences between repeats, and base distributions. From a linear DNA sequence, a compression model can produce a linear information sequence. Linear space complexity is important when exploring long DNA sequences of the order of millions of bases. Compressing a sequence in isolation will include information on self-repetition. Whereas compressing a sequence Y in the context of another X can find what new information X gives about Y. This paper presents a methodology for performing comparative analysis to find features exposed by such models. RESULTS: We apply such a model to find features across chromosomes of Cyanidioschyzon merolae. We present a tool that provides useful linear transformations to investigate and save new sequences. Various examples illustrate the methodology, finding features for sequences alone and in different contexts. We also show how to highlight all sets of self-repetition features, in this case within Plasmodium falciparum chromosome 2. CONCLUSION: The methodology finds features that are significant and that biologists confirm. The exploration of long information sequences in linear time and space is fast and the saved results are self documenting.

    A genome alignment algorithm based on compression

    No full text

    Polyome: A Learning System for Extracting Bioinformatic Data

    No full text
    Abstract: The exponential growth in the quantity of publicly available genetic data and the proliferation of bioinformatic databases mean that scientists need computerized tools more than ever. Existing approaches to the problem all suffer from one or more basic problems. This paper describes Polyome, the core of a system for the integration and querying o

    A Simple Statistical Algorithm for Biological Sequence Compression

    No full text
    This paper introduces a novel algorithm for biological sequence compression that makes use of both statistical properties and repetition within sequences. A panel of experts is maintained to estimate the probability distribution of the next symbol in the sequence to be encoded. Expert probabilities are combined to obtain the final distribution. The resulting information sequence provides insight for further study of the biological sequence. Each symbol is then encoded by arithmetic coding. Experiments show that our algorithm outperforms existing compressors on typical DNA and protein sequence datasets while maintaining a practical running time. 1

    Robust estimation of evolutionary distances with information theory

    No full text
    Methods for measuring genetic distances in phylogenetics are known to be sensitive to the evolutionary model assumed. However, there is a lack of established methodology to accommodate the trade-off between incorporating sufficient biological reality and avoiding model overfitting. In addition, as traditional methods measure distances based on the observed number of substitutions, their tend to underestimate distances between diverged sequences due to backward and parallel substitutions. Various techniques were proposed to correct this, but they lack the robustness against sequences that are distantly related and of unequal base frequencies. In this article, we present a novel genetic distance estimate based on information theory that overcomes the above two hurdles. Instead of examining the observed number of substitutions, this method estimates genetic distances using Shannon's mutual information. This naturally provides an effective framework for balancing model complexity and goodness of fit. Our distance estimate is shown to be approximately linear to elapsed time and hence is less sensitive to the divergence of sequence data and compositional biased sequences. Using extensive simulation data, we show that our method 1) consistently reconstructs more accurate phylogeny topologies than existing methods, 2) is robust in extreme conditions such as diverged phylogenies, unequal base frequencies data, and heterogeneous mutation patterns, and 3) scales well with large phylogenies

    Building classification models from microarray data with tree-based classification algorithms

    No full text
    Abstract. Building classification models plays an important role in DNA mircroarray data analyses. An essential feature of DNA microarray data sets is that the number of input variables (genes) is far greater than the number of samples. As such, most classification schemes employ variable selection or feature selection methods to pre-process DNA microarray data. This paper investigates various aspects of building classification models from microarray data with tree-based classification algorithms by using Partial Least-Squares (PLS) regression as a feature selection method. Experimental results show that the Partial Least-Squares (PLS) regression method is an appropriate feature selection method and tree-based ensemble models are capable of delivering high performance classification models for microarray data.
    corecore