35 research outputs found

    Bioturbator-stimulated loss of seagrass sediment carbon stocks

    Full text link
    © 2018 Association for the Sciences of Limnology and Oceanography Seagrass ecosystems are highly productive, and are sites of significant carbon sequestration. Sediment-held carbon stocks can be many thousands of years old, and persist largely due to sediment anoxia and because microbial activity is decreasing with depth. However, the carbon sequestered in seagrass ecosystems may be susceptible to remineralization via the activity of bioturbating fauna. Microbial priming is a process whereby remineralization of sediment carbon (recalcitrant organic matter) is stimulated by disturbance, i.e., burial of a labile source of organic matter (seagrass). We investigated the hypothesis that bioturbation could mediate remineralization of sediment carbon stocks through burial of seagrass leaf detritus. We carried out a 2-month laboratory study to compare the remineralization (measured as CO 2 release) of buried seagrass leaves (Zostera muelleri) to the total rate of sediment organic matter remineralization in sediment with and without the common Australian bioturbating shrimp Trypaea australiensis (Decapoda: Axiidea). In control sediment containing seagrass but no bioturbators, we observed a negative microbial priming effect, whereby seagrass remineralization was favored over sediment remineralization (and thus preserving sediment stocks). Bioturbation treatments led to a two- to five-fold increase in total CO 2 release compared to controls. The estimated bioturbator-stimulated microbial priming effect was equivalent to 15% of the total daily sediment-derived CO 2 releases. We propose that these results indicate that bioturbation is a potential mechanism that converts these sediments from carbon sinks to sources through stimulation of priming-enhanced sediment carbon remineralization. We further hypothesized that significant changes to seagrass faunal communities may influence seagrass sediment carbon stocks

    A global assessment of the chemical recalcitrance of seagrass tissues: Implications for long-term carbon sequestration

    Full text link
    © 2017 Trevathan-Tackett, Macreadie, Sanderman, Baldock, Howes and Ralph. Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA) and solid state13 C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16%of total organic matter compared to 8–10%in other tissues); however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues’ contributions to long-termcarbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies

    Comment on 'Geoengineering with seagrasses: Is credit due where credit is given?'

    Get PDF
    Over the past decade scientists around the world have sought to estimate the capacity of seagrass meadows to sequester carbon, and thereby understand their role in climate change mitigation. The number of studies reporting on seagrass carbon accumulation rates is still limited, but growing scientific evidence supports the hypothesis that seagrasses have been efficiently locking away CO2 for decades to millennia (e.g. Macreadie et al 2014, Mateo et al 1997, Serrano et al 2012). Johannessen and Macdonald (2016), however, challenge the role of seagrasses as carbon traps, claiming that gains in carbon storage by seagrasses may be \u27illusionary\u27 and that \u27their contribution to the global burial of carbon has not yet been established\u27. The authors warn that misunderstandings of how sediments receive, process and store carbon have led to an overestimation of carbon burial by seagrasses. Here we would like to clarify some of the questions raised by Johannessen and Macdonald (2016), with the aim to promote discussion within the scientific community about the evidence for carbon sequestration by seagrasses with a view to awarding carbon credits

    Can we manage coastal ecosystems to sequester more blue carbon?

    Full text link
    © The Ecological Society of America To promote the sequestration of blue carbon, resource managers rely on best-management practices that have historically included protecting and restoring vegetated coastal habitats (seagrasses, tidal marshes, and mangroves), but are now beginning to incorporate catchment-level approaches. Drawing upon knowledge from a broad range of environmental variables that influence blue carbon sequestration, including warming, carbon dioxide levels, water depth, nutrients, runoff, bioturbation, physical disturbances, and tidal exchange, we discuss three potential management strategies that hold promise for optimizing coastal blue carbon sequestration: (1) reducing anthropogenic nutrient inputs, (2) reinstating top-down control of bioturbator populations, and (3) restoring hydrology. By means of case studies, we explore how these three strategies can minimize blue carbon losses and maximize gains. A key research priority is to more accurately quantify the impacts of these strategies on atmospheric greenhouse-gas emissions in different settings at landscape scales

    A marine heat wave drives massive losses from the world\u27s largest seagrass carbon stocks.

    Get PDF
    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system

    Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp

    Full text link
    © 2014 Elsevier B.V. Temperate and tropical seagrasses are susceptible to wasting disease outbreaks caused by pathogenic protists of the genus Labyrinthula. Even though there is an increasing awareness of the environmental conditions that influence the etiology of seagrass-. Labyrinthula disease dynamics, the biochemical basis of seagrass defense responses, in particular chemical defenses, is still vastly understudied. Using an in vitro bioassay, we provide evidence that previously characterized phenolic and potentially novel, undescribed non-phenolic metabolites derived from Thalassia testudinum Banks ex Konig exhibit anti-labyrinthulid activity. All phenolic compounds tested displayed dose-dependent behavior and selected combinations interacted synergistically. The flavone glycoside thalassiolin B was roughly 20-100 times more active than any phenolic acid tested. Based upon values reported in the literature, it was calculated that infected specimens of T. testudinum contain natural concentrations of phenolic acids that are consistently greater than what is required to inhibit Labyrinthula growth. This suggests that while there may be an ample supply of phenolic-based derivatives available to inhibit Labyrinthula growth, they may not be readily bio-accessible.Using a bioactivity-guided approach, a semi-purified chemical fraction from T. testudinum was found to contain anti-labyrinthulid activity. 1H NMR spectra for this fraction lacked aromatic hydrogen signals, suggesting that the bioactive compound was non-aromatic in nature. Furthermore, the LC-MS fragmentation patterns were suggestive of the presence of glycosylated natural products of an unknown structural class. This has the potential to provide a foundation for future chemical investigations

    Fresh carbon inputs to seagrass sediments induce variable microbial priming responses

    Full text link
    © 2017 Elsevier B.V. Microbes are the ‘gatekeepers’ of the marine carbon cycle, yet the mechanisms for how microbial metabolism drives carbon sequestration in coastal ecosystems are still being defined. The proximity of coastal habitats to runoff and disturbance creates ideal conditions for microbial priming, i.e., the enhanced remineralisation of stored carbon in response to fresh substrate availability and oxygen introduction. Microbial priming, therefore, poses a risk for enhanced CO2 release in these carbon sequestration hotspots. Here we quantified the existence of priming in seagrass sediments and showed that the addition of fresh carbon stimulated a 1.7- to 2.7-fold increase in CO2 release from recent and accumulated carbon deposits. We propose that priming taking place at the sediment surface is a natural occurrence and can be minimised by the recalcitrant components of the fresh inputs (i.e., lignocellulose) and by reduced metabolism in low oxygen and high burial rate conditions. Conversely, priming of deep sediments after the reintroduction to the water column through physical disturbances (e.g., dredging, boat scars) would cause rapid remineralisation of previously preserved carbon. Microbial priming is identified as a process that weakens sediment carbon storage capacity and is a pathway to CO2 release in disturbed or degraded seagrass ecosystems; however, increased management and restoration practices can reduce these anthropogenic disturbances and enhance carbon sequestration capacity

    mixchar: An R Package for the Deconvolution of Thermal Decay Curves

    Get PDF
    Plant cell wall biomass is composed of a range of different types of carbon-based compounds. The proportions of the primary carbon types affect how cell walls decompose, an important ecosystem process because their decay contributes to soil carbon. Traditionally, these components are estimated using wet chemistry methods that can be costly and degrade the environment. Thermogravimetric analysis is an alternative method, already used by biofuel researchers, that involves pyrolysing dry, ground plant litter and estimating contribution of carbon components from a resulting mass decay curve. Because carbon types break down relatively independently, we can apply a mixture model to the multi-peaked rate of mass loss curve to identify mass loss of each carbon component. The mixchar package conducts this peak separation analysis in an open-source and reproducible way using R. mixchar has been tested over a range of plant litter types, composed primarily of the fiber components: hemicellulose, cellulose, and lignin

    Converting beach-cast seagrass wrack into biochar: A climate-friendly solution to a coastal problem

    Full text link
    © 2016 Excessive accumulation of plant ‘wrack’ on beaches as a result of coastal development and beach modification (e.g. groin installation) is a global problem. This study investigated the potential for converting beach-cast seagrass wrack into biochar as a ‘climate-friendly’ disposal option for resource managers. Wrack samples from 11 seagrass species around Australia were initially screened for their biochar potential using pyrolysis techniques, and then two species – Posidonia australis and Zostera muelleri – underwent detailed analyses. Both species had high levels of refractory materials and high conversion efficiency (48–57%) of plant carbon into biochar carbon, which is comparable to high-quality terrestrial biochar products. P. australis wrack gave higher biochar yields than Z. muelleri consistent with its higher initial carbon content. According to 13C NMR, wrack predominantly comprised carbohydrates, protein, and lignin. Aryl carbon typical of pyrogenic materials dominated the spectrum of the thermally-altered organic materials. Overall, this study provides the first data on the feasibility of generating biochar from seagrass wrack, showing that biocharring offers a promising climate-friendly alternative to disposal of beach wrack in landfill by avoiding a portion of the greenhouse gas emissions that would otherwise occur if wrack was left to decompose

    Quantifying and modelling the carbon sequestration capacity of seagrass meadows-a critical assessment

    Full text link
    Seagrasses are among the planet\u27s most effective natural ecosystems for sequestering (capturing and storing) carbon (C); but if degraded, they could leak stored C into the atmosphere and accelerate global warming. Quantifying and modelling the C sequestration capacity is therefore critical for successfully managing seagrass ecosystems to maintain their substantial abatement potential. At present, there is no mechanism to support carbon financing linked to seagrass. For seagrasses to be recognised by the IPCC and the voluntary C market, standard stock assessment methodologies and inventories of seagrass C stocks are required. Developing accurate C budgets for seagrass meadows is indeed complex; we discuss these complexities, and, in addition, we review techniques and methodologies that will aid development of C budgets. We also consider a simple process-based data assimilation model for predicting how seagrasses will respond to future change, accompanied by a practical list of research priorities
    corecore