58 research outputs found

    Surface-Cross-Linked Micelles as Multifunctionalized Organic Nanoparticles for Controlled Release, Light Harvesting, and Catalysis

    Get PDF
    Surfactant micelles are dynamic entities with a rapid exchange of monomers. By “clicking” tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts

    Flagellin delays spontaneous human neutrophil apoptosis

    Get PDF
    Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella thyphimurim at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IBα degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-B activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-B activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. thyphimurim. Both a wild-type and an aflagellate mutant S. thyphimurim strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-B. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.Facultad de Ciencias Exacta

    Flagellin delays spontaneous human neutrophil apoptosis

    Get PDF
    Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella thyphimurim at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IBα degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-B activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-B activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. thyphimurim. Both a wild-type and an aflagellate mutant S. thyphimurim strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-B. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.Facultad de Ciencias Exacta

    A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis

    Get PDF
    BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(-) and HCO(3)(-), in mediating prostate HCO(3)(-) secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3)(-) content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3)(-) on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3)(-) secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3)(-) secretion may be up-regulated in prostatitis as a host defense mechanism

    Controlled Release from Cleavable Polymerized Liposomes upon Redox and pH Stimulation

    Get PDF
    A gallate derivative with three propargyl groups was coupled to palmitoyl oleoyl phosphoethanolamine (POPE). The resulting anionic lipid was formulated with common lipids such as palmitoyl oleoyl phosphatidyl choline (POPC) to form large unilamellar vesicles (LUVs). Polymerization of the LUVs was accomplished by the Cu(I)-catalyzed click reaction between the propargyl groups and the azide groups in the cross-linker. When the cross-linker contained a disulfide or ketal group, the resulting polymerized liposomes depolymerized and released entrapped contents upon the addition of a reducing thiol or under weakly acidic conditions. The click reaction allowed simultaneous multivalent surface functionalization during cross-linking, making these cleavable polymerized liposomes (CPLs) potentially very useful in the delivery and controlled release of pharmaceutical agents

    Local Inflammation Induces Complement Crosstalk Which Amplifies the Antimicrobial Response

    Get PDF
    By eliciting inflammatory responses, the human immunosurveillance system notably combats invading pathogens, during which acute phase proteins (CRP and cytokines) are elevated markedly. However, the Pseudomonas aeruginosa is a persistent opportunistic pathogen prevalent at the site of local inflammation, and its acquisition of multiple antibiotic-resistance factors poses grave challenges to patient healthcare management. Using blood samples from infected patients, we demonstrate that P. aeruginosa is effectively killed in the plasma under defined local infection-inflammation condition, where slight acidosis and reduced calcium levels (pH 6.5, 2 mM calcium) typically prevail. We showed that this powerful antimicrobial activity is provoked by crosstalk between two plasma proteins; CRP∶L-ficolin interaction led to communication between the complement classical and lectin pathways from which two amplification events emerged. Assays for C4 deposition, phagocytosis, and protein competition consistently proved the functional significance of the amplification pathways in boosting complement-mediated antimicrobial activity. The infection-inflammation condition induced a 100-fold increase in CRP∶L-ficolin interaction in a pH- and calcium-sensitive manner. We conclude that the infection-induced local inflammatory conditions trigger a strong interaction between CRP∶L-ficolin, eliciting complement-amplification pathways which are autonomous and which co-exist with and reinforce the classical and lectin pathways. Our findings provide new insights into the host immune response to P. aeruginosa infection under pathological conditions and the potential development of new therapeutic strategies against bacterial infection
    corecore