4 research outputs found

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Epigenetic modulation of tenascin C in the heart: implications on myocardial ischemia, hypertrophy and metabolism

    Full text link
    BACKGROUND Tenascin C (TN-C) is considered to play a pathophysiological role in maladaptive left ventricular remodeling. Yet, the mechanism underlying TN-C-dependent cardiac dysfunction remains elusive. METHOD The present study was designed to investigate the effect of hypoxia and hypertrophic stimuli on TN-C expression in H9c2 cells and its putative regulation by epigenetic mechanisms, namely DNA promoter methylation and microRNAs. In addition, rats subjected to myocardial infarction (MI) were investigated. H9c2 cells were subjected to oxygen and glucose deprivation; incubated with angiotensin II (Ang II); or human TN-C (hTN-C) purified protein. Hypertrophic and fibrotic markers, TN-C promoter methylation as well as mir-335 expression were assessed by reverse transcription and quantitative polymerase chain reaction while TN-C protein levels were assessed by ELISA. RESULTS Tn-C mRNA expression was markedly increased by both oxygen and glucose deprivation and Ang II (P < 0.01, respectively). In addition, Ang-II-dependent TN-C upregulation was explained by reduced promoter methylation (P < 0.05). Cells treated with hTN-C displayed upregulation of Bnp, Mmp2, β-Mhc, integrin α6 and integrin β1. Furthermore, hTN-C treated cells showed a significant reduction in adenosine monophosphate and adenosine triphosphate levels. In vivo, plasma and myocardial TN-C levels were increased 7 days post MI (P < 0.05, respectively). This increment in TN-C was accompanied by upregulation of mir-335 (P < 0.01). In conclusion, both hypoxic and hypertrophic stimuli lead to epigenetically driven TN-C upregulation and subsequent impairment of cellular energy metabolism in cardiomyoblasts. CONCLUSION These findings might enlighten our understanding on maladaptive left ventricular remodeling and direct towards a strong involvement of TN-C

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text
    corecore