29 research outputs found

    Sensory cutaneous papillae in the sea lamprey (Petromyzonmarinus L.) : I. Neuroanatomy and physiology

    Full text link
    Molecules present in an animal's environment can indicate the presence of predators,food, or sexual partners and consequently, induce migratory, reproductive, foraging,or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitarychemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While agreat deal of research has focused on the olfactory and gustatory system over theyears, it is only recently that significant attention has been devoted to the SCC sys-tem. The SCCs are microvillous cells that were first discovered on the skin of fish,and later in amphibians, reptiles, and mammals. Lampreys also possess SCCs that areparticularly numerous on cutaneous papillae. However, little is known regarding theirprecise distribution, innervation, and function. Here, we show that sea lampreys(Petromyzon marinus L.) have cutaneous papillae located around the oral disk, nostril,gill pores, and on the dorsal fins and that SCCs are particularly numerous on thesepapillae. Tract-tracing experiments demonstrated that the oral and nasal papillae areinnervated by the trigeminal nerve, the gill pore papillae are innervated by branchialnerves, and the dorsal fin papillae are innervated by spinal nerves. We also character-ized the response profile of gill pore papillae to some chemicals and showed thattrout-derived chemicals, amino acids, and a bile acid produced potent responses.Together with a companion study (Suntres et al., Journal of Comparative Neurology,this issue), our results provide new insights on the function and evolution of the SCCsystem in vertebrates

    Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish

    Get PDF
    The hagfish, a group of extant jawless fish, are known to lack true vertebrae and, for this reason, have often been excluded from the group Vertebrata. However, it has yet to be conclusively shown whether hagfish lack all vertebra-like structures, and whether their somites follow developmental processes and patterning distinct from those in lampreys and gnathostomes. Here we report the presence of vertebra-like cartilages in the in-shore hagfish, Eptatretus burgeri. These elements arise as small nodules occupying anatomical positions comparable to those of gnathostome vertebrae. Examination of hagfish embryos suggests that the ventromedial portion of a somite transforms into mesenchymal cells that express cognates of Pax1/9 and Twist, strikingly similar to the pattern of sclerotome development in gnathostomes. We conclude that the vertebra-like elements in the hagfish are homologous to gnathostome vertebrae, implying that this animal underwent secondary reduction of vertebrae in most of the trunk
    corecore