9 research outputs found

    Electrochemical micromachining: An Introduction

    Get PDF
    Copyright © 2016 The Author(s). Electrochemical machining (ECM) is a relatively new technique, only being introduced as a commercial technique within the last 70 years (1). A lot of research was conducted in the 1960s and 1970s but research on electrical discharge machining (EDM) around the same time slowed ECM research (2). The main influence for the development of ECM came from the aerospace industry where very hard alloys were required to be machined without leaving a defective layer in order to produce a component which would behave reliably (3). ECM was primarily used for the production of gas turbine blades (2) or to machine materials into complex shapes that would be difficult to machine using conventional machining methods (4). Tool wear is high and the metal removal rate is slow when machining hard materials with conventional machining methods such as milling. This increases the cost of the machining process overall and this method creates a defective layer on the machined surface (3). Whereas with ECM there is virtually no tool wear even when machining hard materials and it does not leave a defective layer on the machined surface. This paper reviews the application of electrochemical machining with regards to micro-manufacturing and present state of the art micro ECM considering different machined materials, electrolytes and conditions used.The research reported in this article was supported by the European Commission within the project ‘Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)’ (FP7-2011-NMP-ICT-FoF-285614)

    Global mortality and readmission rates following COPD exacerbation-related hospitalisation: a meta-analysis of 65 945 individual patients

    Get PDF
    \ua9 2024, European Respiratory Society. All rights reserved.Background Exacerbations of COPD (ECOPD) have a major impact on patients and healthcare systems across the world. Precise estimates of the global burden of ECOPD on mortality and hospital readmission are needed to inform policy makers and aid preventive strategies to mitigate this burden. The aims of the present study were to explore global in-hospital mortality, post-discharge mortality and hospital readmission rates after ECOPD-related hospitalisation using an individual patient data meta-analysis (IPDMA) design. Methods A systematic review was performed identifying studies that reported in-hospital mortality, postdischarge mortality and hospital readmission rates following ECOPD-related hospitalisation. Data analyses were conducted using a one-stage random-effects meta-analysis model. This study was conducted and reported in accordance with the PRISMA-IPD statement. Results Data of 65 945 individual patients with COPD were analysed. The pooled in-hospital mortality rate was 6.2%, pooled 30-, 90- and 365-day post-discharge mortality rates were 1.8%, 5.5% and 10.9%, respectively, and pooled 30-, 90- and 365-day hospital readmission rates were 7.1%, 12.6% and 32.1%, respectively, with noticeable variability between studies and countries. Strongest predictors of mortality and hospital readmission included noninvasive mechanical ventilation and a history of two or more ECOPD-related hospitalisation
    corecore